

    
      
          
            
  
Welcome to haven’s documentation!


Warning

This package is intended for use primarily by beamline staff. For
user operations at the beamline, consider the firefly package.
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Tutorials

These tutorials provide a step-by-step guide to performing specific
tasks.

These guides do not cover the individual beamlines thoroughly.


Contents:


	Demonstration of Knife Scans
	Running the Scan

	Loading the Data

	Loading Data From The Other Branch





	Tutorial: XAFS Scans and Energy Scans
	Running a Single-Segment XANES scan

	Loading the Data

	Running a Multi-Segment XAFS Scan

	Running a Multi-Segment EXAFS Scan in K-space

	Modifying the List of Detectors





	Tutorial: Area Detectors
	Loading the Ophyd Device

	Verifying the Device Can Be Staged

	Running an XAFS Scan





	Demonstration of Fly-Scanning
	Preparing the Aerotech Flyer

	1D Fly-Scan

	2D Map Fly-Scanning












            

          

      

      

    

  

    
      
          
            
  This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).


Demonstration of Knife Scans

This notebook shows the following tasks: - basic of collecting a knife edge scan - loading the scan data from the database - analyzing the knife edge scan to determine beam position and size - saving the data to disk as a csv file

First we have to import haven, the beamline control library. Haven contains most of the tools we will use. Importing it allows us to get to the functions and classes that are defined inside.

Next, the haven.load_instrument() function will read the configuration files and scan the hardware for its configuration. It will then build the devices that will be used for scans. This function prints out a list of motors that it has discovered.

Then, we create the run engine. The run engine is responsible for executing our scans and will be described in more detail when it is used below.

Lastly we set metadata about who is running the beamline. This value will be saved in every plan executing on this run engine. This step is optional, but will allow database queries for scans taken by a specific person.


[2]:





import haven
# Load the motors and detectors
haven.load_instrument()
# The RunEngine will be responsible for executing the plans
RE = haven.RunEngine()
# (Optional) Save the initials of the current beamline operator as metadata
RE.md["operator"] = "MFW"  # <- Put your initials in here













energy_energy
energy_mono_energy
I0_sensitivity_sens_level
Idk_sensitivity_sens_level
It_sensitivity_sens_level
SLT V Upper
SLT V Lower
SLT H Inb
SLT H Outb
KBH Down
KBH Up
KBV Down
KBV Up
KB Tbl H
KB Tbl V
Focus V
Focus H
Focus In Out
ADC KB Focus
SampleZ
I0 H
I0 V
Optic In Out
Optic V
Optic H












cannot connect to 25idcVME:m65.DESC












monochromator_horiz
monochromator_vert
monochromator_bragg
monochromator_gap
monochromator_roll2
monochromator_pitch2
monochromator_roll_int
monochromator_pi_int
monochromator_mode
monochromator_energy
Aerotech_vert
Aerotech_horiz







Running the Scan

Running a scan in bluesky is a two step process.

First, create a plan. A plan generates messages with instructions to do things like move a motor, wait for a motor to arrive at its destination, and trigger and read a detector. To create a plan, you call a function that will generate these messages. Calling the function doesn’t actually execute the scan. In our case, haven.knife_scan("Focus V", -200, 200, 50) will create the plan, but the plan will not do anything unless used with a run engine.

haven.knife_scan needs to know which motor to scan over, so in the cell below we provide it with knife_motor="Focus V". The names of motors are the same as those printed out when loading the instrument configuration above. The start, stop parameters determine the range that the motor will scan. If relative is False (default), then start and stop will be absolute positions, and if relative is True, then start and stop will be relative to motor’s position at the start of
the run.

The knife scan plan also needs to know which detectors to measure. The names for the detectors are the same as the descriptions for the EPICS channels on the scaler. By default it will use It="It" and I0="I0", but any scaler channel can be used.

Next, execute the plan on the run engine. At the top of this document we created a run engine. Now we will use this run engine to execute the plan. The run engine will read the messages and perform the appropriate tasks.

When the run engine finishes the plan, it will return a unique identifier (UID). This UID is the best way to retrieve the data from the database. We will save the UID to a variable, and also print it to the page in case we want to recall it later.


[ ]:





plan = haven.knife_scan(knife_motor="Focus V", start=-200, end=200, num=50, relative=True)
uid = RE(plan)
print(uid)









Loading the Data

During execution the data are saved to a mongoDB database. Haven has tools to retrieve the data, as well as fit the knife scan to determine the beam position and size.

The load_data() function will return a data set, provided we supply the uid that we had previously recorded. It is possible to have multiple experimental runs within a single call to the run engine, and so our variable uid from above is actually a list of UIDs. Since there was only one run, we will just use the first (and only) entry: uid[0].

If the analysis is being done at a different time or place from running the scan, then the variable uid will probably not be set. In this case, it is possible to provide the UID that was printed above.

The fit_step() function is used to analyze the knife scan data to determine the beam position and size. Optionally, it will also plot the knife scan, its derivative, and the full-width at half-maximum for each. fit_step() needs the x and y data to process, which we can get from the data we loaded from the database. The name of the knife position will be the name of the motor you selected when running the scan. For the y position, we will calculate the transmission
(\(\frac{I_t}{I_0}\)). There are several possible values for the ion chamber, so we must specify one (e.g. “I0_raw_counts”, “I0_volts”)

Optionally, the data can be saved to a text CSV file for additional analysis. First we will convert it to a pandas DataFrame and then use panda’s to_csv() method. We will append the first segment of the UID to the filename to descrease the likelihood that we will overwrite data.


[9]:





# Uncomment this line to manually specify a UID
# uid = ["927fa7dd-e331-45ca-bb9d-3f89d7c65b17"]
# Load the data for the first (and only) UID in the list
data = haven.load_data(uid[0])
# Save the data to a CSV file, with tabs ("\t") instead of commas.
data.to_pandas().to_csv(f"knife_scan_example_{uid[0].split('-')[0]}.csv", sep='\t')
# Do the fitting
transmission = data["It_raw_counts"] / data["I0_raw_counts"]
properties = haven.fit_step(x=data["Focus V "], y=transmission, plot=True, plot_derivative=True)
print(properties)













Properties(position=5961.212838126833, fwhm=1449.2198918394388)











[image: ../_images/tutorials_knife_scan_7_1.png]






Loading Data From The Other Branch

By default, haven.load_data() will retrieve data for the branch corresponding to the computer you are using (e.g. microprobe branch from the microprobe computer and lerix branch for the lerix computer).

The can be changed by using passing the catalog_name argument to haven.load_data().


[3]:





# This is the UID from a previous knife edge scan at the 25-ID-C microprobe branch.
# Since we explicitly select the s25idc catalog,
#   this cell will work from either the lerix or microprobe computers.
uid_from_previous_scan = "927fa7dd-e331-45ca-bb9d-3f89d7c65b17"
# Load the data by explicitly specifying the catalog to look in
data = haven.load_data(uid_from_previous_scan, catalog_name="s25idc")
# Do the fitting and plotting as normal
haven.fit_step(x=data["knife"], y=data.It_raw_counts/data.I0_raw_counts, plot=True, plot_derivative=True)








[3]:







Properties(position=5961.212838126833, fwhm=1449.2198918394388)











[image: ../_images/tutorials_knife_scan_9_1.png]






This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).



            

          

      

      

    

  

    
      
          
            
  
Tutorial: XAFS Scans and Energy Scans

This notebook shows the following tasks:


	Running a Single-Segment XANES scan


	Loading the Data


	Running a Multi-Segment XAFS Scan


	Running a Multi-Segment EXAFS Scan in K-space


	Modifying the List of Detectors




First we have to setup haven, the beamline control library. Haven
contains most of the tools we will use. We can import haven, setup the
instrument, and create the run engine with the start_haven
command. After the required steps are completed, it will deliver us
into an ipython terminal.

We will also set metadata about who is running the beamline. This
value will be saved in every plan executing on this run engine. This
step is optional, but will allow database queries for scans taken by a
specific person.

>>> RE.md["operator"] = "MFW"  # <- Put your initials in here






Running a Single-Segment XANES scan

Running a scan in bluesky is a two step process.

First, create a plan. A plan generates messages with instructions
to do things like move a motor, wait for a motor to arrive at its
destination, and trigger and read a detector. To create a plan, you
call a function that will generate these messages. Calling the
function doesn’t actually execute the scan. In our case,
haven.xafs_scan(8325, 0.5, 1, 8350) will create the plan, but the
plan will not do anything unless used with a run engine.

The xafs_scan() plan requires at
least four values: (start, step, exposure, stop). start and stop
mark the boundaries of the energy range, in eV. step is the space
between energy points, in eV. Unless the range between start and
stop is a whole multiple of step, the stop energy will not
appear in the scan. exposure is the time, in seconds, for which to
count at each energy.

The optional argument E0 specifies the energy, in eV, of an x-ray
absorbance edge. If given, all other energy values (i.e. start and
stop) will be relative to E0.

>>> # These two plans will scan from 8323 eV to 8383 eV
>>> #   in 2eV steps with 1 sec exposure
>>> absolute_plan = haven.xafs_scan(8323, 2, 1, 8383)
>>> relative_plan = haven.xafs_scan(-20, 2, 1, 50, E0=8333)





Before running either of these plans, we can verify that it will do
what we expect with the
simulators:summarize_plan() helper. This function
will print a human-readable description of all the steps that will be
taken.

>>> summarize_plan(relative_plan)





Next, execute the plan on the run engine. As part of
start_haven, we created a run engine. Now we will use this run
engine to execute the plan. The run engine will read the messages and
perform the appropriate tasks. We will also provide some meta-data,
which will allow us to determine the purpose of these scans in the
future. simulators:summarize_plan() consumed the
plan so we have to create a new one.

When the run engine finishes the plan, it will return a unique
identifier (UID). This UID is the best way to retrieve the data from
the database. We will save the UID to a variable, and also print
it to the page in case we want to recall it later.

>>> plan = haven.xafs_scan(-20, 2, 1, 50, E0=8333)
>>> # Run one of the plans with the previously created RunEngine
>>> uid = RE(plan, sample_name="Ni foil", purpose="training")
>>> print(uid)







Loading the Data

During execution the data are saved to a mongoDB database. Haven has
tools to retrieve the data.

The load_data() function will return a data set, provided we
supply the uid that we had previously recorded. It is possible to have
multiple experimental runs within a single call to the run engine, and
so our variable uid from above is actually a list of UIDs. Since
there was only one run, we will just use the first (and only) entry:
uid[0].

If the analysis is being done at a different time or place from
running the scan, then the variable uid will probably not be set. In
this case, it is possible to provide the UID that was printed above.

Optionally, the data can be saved to a text CSV file for
additional analysis. First we will convert it to a pandas DataFrame
and then use panda’s to_csv() method. We will append the first
segment of the UID to the filename to descrease the likelihood that we
will overwrite data.

>>> # Uncomment this line to manually specify a UID
>>> # uid = ["927fa7dd-e331-45ca-bb9d-3f89d7c65b17"]
>>> # Load the data for the first (and only) UID in the list
>>> data = haven.load_data(uid[0])
>>> # Save the data to a CSV file, with tabs ("\t") instead of commas.
>>> data.to_pandas().to_csv(f"xafs_scan_example_{uid[0].split('-')[0]}.csv", sep='\t')
>>> # Plot the result
>>> data["od"] = data["It_raw_counts"] / data["I0_raw_counts"]
>>> plt.plot(data['energy'], data['od'])







Running a Multi-Segment XAFS Scan

The xafs_scan() function can accept multiple sets of values to
accomodate additional scan regions. After the first set of four
parameters (start, step, exposure, stop), additional sets of
three parameters (step, exposure, stop) can be given and will
use the previous stop energy as its new start energy.

Additionally, Haven will look up the literature energy for a given
X-ray absorption edge, in this case the Ni K-edge.

The call below will scan the following energies, relative to 8333 eV:


	-50 to -10 eV (8283 to 8323 eV) in 5 eV steps with 0.5 sec exposure


	-10 to +50 eV (8323 to 8383 eV) in 1 eV steps with 1 sec exposure


	+50 to +200 eV (8383 to 8533 eV) in 10 eV steps with 0.5 sec exposure




>>> multisegment_plan = haven.xafs_scan(-50, 5, 0.5,  # start, step, exposure
                                        -10, 1, 1,  # start, step, exposure
                                        50, 10, 0.5,  # start, step, exposure
                                        200,  # stop
                                        E0="Ni_K")
>>> # Run the plan with the previously created RunEngine
>>> uid = RE(multisegment_plan, sample_name="Ni foil", purpose="training")
>>> print(uid)







Running a Multi-Segment EXAFS Scan in K-space

The xafs_scan() function can also accept one energy segment as X-ray
wavenumbers instead of X-ray energy using the k_step, k_exposure
and k_max keyword-only parameters. k_weight controls the
increasing exposure time at higher wavenumbers.

>>> exafs_plan = haven.xafs_scan(-200, 5, 1.0,  # start, step, exposure
                                 -20, .3, 1,  # start, step, exposure
                                 30,  # Last non-k energy point (also start of k-region in eV)
                                 k_step=0.05, k_exposure=1.0, k_max=13.5, k_weight=0.5,
                                 E0=8331.0)
>>> # Run the plan with the previously created RunEngine
>>> uid = RE(exafs_plan, sample_name="Ni foil", purpose="training")
>>> print(uid)







Modifying the List of Detectors

By default, xafs_scan() measures all registered ion
chambers, most likely those set up during
haven.load_instrument() called above. This default list can
be overridden by using the detectors argument. This example records
only those scaler channels whose EPICS records’ .DESC values are
“It”, “I0”, or “Iref”. Modify these names to suit your use case.

>>> detectors_plan = haven.xafs_scan(8323, 2, 1, 8383, detectors=["It", "I0", "Iref"])
>>> # Run the plan with the previously created RunEngine
>>> uid = RE(detectors_plan, LivePlot('It_raw_counts', 'energy_energy')
>>> print(uid)









            

          

      

      

    

  

    
      
          
            
  
Tutorial: Area Detectors

This tutorial covers the basics of using an area
detector. Specifically:


	Loading the Ophyd Device


	Verifying the Device Can Be Staged


	Running an XAFS Scan





Loading the Ophyd Device


Note

This tutorial assumes the area detector has already been configured
in Haven for use at the beamline. For setup instructions, see
Area Detectors and Cameras.



First, open a terminal and run start_haven. After a brief wait,
this will import some basic Haven and Bluesky objects and then present
you with an ipython terminal.

Next we will retrieve the device from Haven’s device registry. In
this tutorial we will be using an Eiger S 500K area detector. We need
to know the device name. To find it, we will ask the haven registry
for all available devices.

In [1]: haven.registry.device_names
Out[1]:
['sim_motor',
 'eigerector',
 'energy',
 'monochromator',
 's25id-gige-A',
 'Shutter A',
 'Aerotech',
 'NHQ01_ch1',
 'NHQ01_ch2',
 'KB_slits',
 'eiger',
 'vortex_me4']





The second to last entry is the name of the device we want, so we will
now retrieve it from the device registry:

In [2]: eiger = haven.registry.find("eiger")







Verifying the Device Can Be Staged

If this is the first time the detector has been used since the IOC was
started, there may be additional steps required. To test this, we will
see if the device can be staged.

In [3]: eiger.stage()





If the above function returns without error, then the device can be
unstaged and is ready for use. Before we do that, lets just make sure we can trigger it.

In [4]: eiger.trigger().wait()

In [5]: eiger.unstage()





However, if staging causes and exception about an unprimed plugin,
then we need to prime the plugin first. The following steps should prime the plugin:


	open the caQtDM panels (e.g. start_25idSimDet_caqtdm)


	open the plugins panel (under Plugins click the All button


	Ensure the offending plugins are enabled


	In the original camera panel, click Start button next to “Acquire”
to collect a frame




Now we can stage and trigger the detector.

In [4]: eiger.stage()

In [5]: eiger.trigger().wait()

In [6]: eiger.unstage()







Running an XAFS Scan

First, we will verify that the detector is going to measure the correct signals for this detector:

In [7]: list(eiger.read_attrs)





Next, we will prepare the plan. By default, the
xafs_scan() plan will only measure the
ion chambers. To also trigger the area detector, we must include it
both as a detector and as a time positioner (for setting exposure
time).

In [7]: time_positioners = [eiger.cam.acquire_time, ion_chambers[0].exposure_time]

In [8]: detectors = [eiger, *ion_chambers]





Now we will create an XAFS scan plan with the following energies relative to the N-K edge (8333 eV):


	-200 eV to -30 eV


	10 eV steps


	1 second exposure






	-30 eV to +30 eV


	1 eV steps


	1 second exposure






	+30 eV to k=14 Å⁻


	0.05 Å⁻ steps


	1 second base exposure


	k_weight = 0.5








In [9]: plan = haven.xafs_scan(-200, 10, 1, -30, 1, 1, 30, k_step=0.05, k_max=14, k_exposure=1, k_weight=0.5, E0="Ni_K", time_positioners=time_positioners, detectors=detectors)





Next we will summarize the plan to ensure that it is performing the steps we expect:

In [10]: summarize_plan(plan)





Inspect the output to ensure that it is measuring the correct detectors (Read ['eiger', 'Iref', 'Ipreslit', 'It', 'IpreKB', 'I0dn', 'energy']) and setting the correct energies (energy -> 9069.77015484562) and exposure times (Iref_exposure_time -> 2.2221354183382798 and eiger_cam_acquire_time -> 2.2221354183382798).

Summarizing the plans consumes it, so we will build the plan again,
and run it in the run engine along with some meta-data describing
the sample and the reason we’re measuring it:

In[12]: plan = haven.xafs_scan(-200, 10, 1, -30, 1, 1, 30, k_step=0.05, k_max=14, k_exposure=1, k_weight=0.5, E0="Ni_K", time_positioners=time_positioners, detectors=detectors)

In[13]: RE(plan, sample_name="Ni test sample", purpose="training")









            

          

      

      

    

  

    
      
          
            
  This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).


Demonstration of Fly-Scanning

This notebook covers how to perform a fly-scan, where one motor moves continuously while one or more detectors acquire multiple data points.

This includes the following tasks: - preparing an axis on the Aerotech XY stage as a flyer - executing a 1D fly-scan over an Aerotech axis - loading 1D fly-scan data from the database - executing a 2D scan where one axis is flown - loading 2D fly-scan data from the database

First we have to import haven, the beamline control library. Haven contains most of the tools we will use. Importing it allows us to get to the functions and classes that are defined inside.

Next, the haven.load_instrument() function will read the configuration files and scan the hardware for its configuration. It will then build the devices that will be used for scans. This function prints out a list of motors that it has discovered.

Then, we create the run engine. The run engine is responsible for executing our scans and will be described in more detail when it is used below.

Lastly we set metadata about who is running the beamline. This value will be saved in every plan executing on this run engine. This step is optional, but will allow database queries for scans taken by a specific person.


[21]:





# Import support packages
import matplotlib.pyplot as plt
import numpy as np
# Import haven
import haven
# Load the motors and detectors
haven.load_instrument()
# The RunEngine will be responsible for executing the plans
RE = haven.run_engine()
# (Optional) Save the initials of the current beamline operator as metadata
RE.md["operator"] = "MFW"  # <- Put your initials in here













Could not connect to AravisDetector in 2.27 sec: Hutch A BPM.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-A.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-C.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-D.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-E.
Could not connect to ApsPssShutterWithStatus in 2.27 sec: front_end_shutter.
Could not connect to ApsPssShutterWithStatus in 2.27 sec: hutch_shutter.
Could not connect to ApsMachine in 2.27 sec: APS.
Could not connect to Monochromator in 2.21 sec: monochromator.
Could not connect to ApsUndulator in 2.21 sec: undulator.
Could not connect to energy positioner: energy
Could not connect to fluorescence detector: canberra_Ge7 (20xmap8:)
Could not connect to motor: 25ida:ORM1:m1
Could not connect to motor: 25ida:ORM1:m2
Could not connect to motor: 25ida:ORM1:m3
Could not connect to motor: 25ida:ORM1:m4
Could not connect to motor: 25ida:ORM2:m1
Could not connect to motor: 25ida:ORM2:m2
Could not connect to motor: 25ida:ORM2:m3
Could not connect to motor: 25ida:ORM2:m4
Could not connect to motor: 25ida:ORM2:m5
Could not connect to motor: 25ida:slits:m1
Could not connect to motor: 25ida:slits:m2
Could not connect to motor: 25ida:slits:m3
Could not connect to motor: 25ida:slits:m4
Could not connect to motor: 25ida:slits:m5
Could not connect to motor: 25ida:slits:m6
Could not connect to motor: 25ida:slits:m7
Could not connect to motor: 25ida:slits:m8
Could not connect to motor: 25ida:BPM:m1
APS device not found, suspenders not installed.







Preparing the Aerotech Flyer

We need to get the horizontal axis of the aerotech XY stage as an Ophyd device, and the ion chambers to use as detectors.

This can be done easily with the Haven registry.

We will also use a 0.2 sec dwell time for the rest of this tutorial, which we set on the device now.


[2]:





aerotech = haven.registry.find("aerotech")
# Set dwell time here
dwell_time = 0.2  # seconds
aerotech.horiz.dwell_time.set(dwell_time).wait()
# Get ion chamber devices
ion_chambers = haven.registry.findall("ion_chambers")









1D Fly-Scan

Now we will create the plan to run the fly scan.

We need to provide the start and end positions for the scan. For easy comparison to regular step scans, the start and stop positions are the motor position at the center of the first and last bins of the scan.

We also need to inform the plan how often to make a new data bin. num tells the plan how many bins to create. The example code will produce 41 bins between −1000µm and 1000µm, which means each bin will cover 50µm.


[3]:





start, stop, num = (-1000, 1000, 41)
plan = haven.fly_scan(ion_chambers, aerotech.horiz, start, stop, num)
uid, = RE(plan, purpose="fly scanning tutorial", sample="")
print(f"Scan complete. UID: {uid}")













/home/beams0/S25IDCUSER/micromamba/envs/haven-dev/lib/python3.9/site-packages/event_model/__init__.py:208: UserWarning: The document type 'bulk_events' has been deprecated in favor of 'event_page', whose structure is a transpose of 'bulk_events'.
  warnings.warn(












Scan complete. UID: 0ebb79bd-eea1-4ff2-8a2e-5c4915cd13fc







Viewing 1D Fly-Scan Results


[41]:





# Load the data from the mongodb database
client = haven.tiled_client()
uid = "0ebb79bd-eea1-4ff2-8a2e-5c4915cd13fc"
data = client[uid]['primary']['data'].read()

# Create a new set of axes for plotting
plt.figure()
ax = plt.gca()
# Plot It versus motor position (w/o offset for now)
ax.plot(data.aerotech_horiz, data.Ipre_KB_net_counts, marker='o', linestyle="--")
ax.set_xlabel("Aerotech horiz /µm")
ax.set_ylabel("It net counts")








[41]:







Text(0, 0.5, 'It net counts')











[image: ../_images/tutorials_fly_scanning_8_1.png]







2D Map Fly-Scanning

In this section we will fly the horizontal axis and step the vertical axis.

Instead of fly_scan() we will use grid_fly_scan().


[7]:





# Set parameters for fly scan here
step_params = (-1500, 500, 21)  # (start, stop, num)
fly_params = (-1000, 1000, 41)  # (start, stop, num)
# Create the plan, slow axis listed first
plan = haven.grid_fly_scan(ion_chambers, aerotech.vert, *step_params, aerotech.horiz, *fly_params, snake_axes=True)
# Execute the plan
uid, = RE(plan, purpose="fly scanning tutorial", sample="")
print(f"Scan complete. UID: {uid}")













/home/beams0/S25IDCUSER/micromamba/envs/haven-dev/lib/python3.9/site-packages/event_model/__init__.py:208: UserWarning: The document type 'bulk_events' has been deprecated in favor of 'event_page', whose structure is a transpose of 'bulk_events'.
  warnings.warn(












Scan complete. UID: 5e00f671-7b4b-4215-8ed9-224566a6fa35







Viewing 2D Fly-Scan Results


[39]:





# Load the data from the mongodb database
client = haven.tiled_client()
uid = "5e00f671-7b4b-4215-8ed9-224566a6fa35"
# Get the shape of the map from the metadata
metadata = client[uid].metadata
extent = (*metadata['start']['extents'][1], *metadata['start']['extents'][0])
shape = metadata['start']['shape']
# Read and re-shape the data
data = client[uid]['primary']['data'].read()








[40]:





# Create a new set of axes for plotting
plt.figure()
ax = plt.gca()
# Plot a map of It measurements (w/o offset for now)
I0 = np.reshape(np.asarray(data.Ipre_KB_net_counts), shape)
im = ax.imshow(I0, extent=extent, origin="lower")
plt.colorbar(im, ax=ax)
ax.set_xlabel("Aerotech horiz /µm")
ax.set_ylabel("Aerotech vert /µm")








[40]:







Text(0, 0.5, 'Aerotech vert /µm')











[image: ../_images/tutorials_fly_scanning_13_1.png]







This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).



            

          

      

      

    

  

    
      
          
            
  
How-To Guides

These guides cover a particular topic in depth, coving material useful
to users and beamline staff.

These guides do not cover the individual beamlines thoroughly.


Contents:


	Area Detectors and Cameras
	Using Devices in Haven





	Making Changes to Haven and Contributing
	From a Development Environment

	From the Beamline

	Design Defense





	Configuration Files
	Motivation

	Checking Configuration

	Configuration File Priority

	Development and Testing

	Example Configuration





	Defining a New Motor

	Energy Scans (XAFS)
	xafs_scan() for Straight-Forward XAFS Scans

	Defining Scans in K-Space

	energy_scan() for More Sophisticated Scans

	Changing Detectors or Positioners





	Fluorescence Detectors
	Specifying Detectors in Configuration

	Common Behavior

	Xspress 3

	XIA DXP (XMAP)





	Fly Scanning
	Plans for Fly-Scanning

	Aerotech-Stage

	Notes





	Hardware Triggering

	Instrument Registry for Looking Up Components
	Looking Up Registered Devices/Components

	Looking Up Sub-Components by Dot-Notation

	Registering Individual Devices

	Registering Device Classes

	Creating Your Own Registry

	Design Defense





	Motor Positions
	Saving a Motor Position

	Viewing Saved Motor Positions

	Recalling a Saved Motor Position

	The MotorPosition Data Model





	Saving Data to XDI Files
	Using the XDIWriter

	Custom Subclasses of XDIWriter












            

          

      

      

    

  

    
      
          
            
  
Area Detectors and Cameras

Area detectors are all largely the same but with small variations from
device-to-device. All the device definitions for area detectors are in
the haven.instrument.area_detector module.

Currently supported detectors:


	Eiger 500K (Eiger500K)


	Lambda (Lambda250K)


	Simulated detector (SimDetector)




EPICS and Ophyd do not make a distinction between area detectors and
cameras. After all, a camera is just an area detector for visible
light.

In Haven, the device classes are largely the same. The only
substantive difference is that cameras have the ophyd label “cameras”,
whereas non-camera area detectors (e.g. Eiger 500K), have the ophyd
label “area_detectors”. They can be used interchangeably in plans.


Warning

Currently, cameras are not properly implemented in Haven. This will
be fixed soon.




Using Devices in Haven

If the device you are using already has a device class created for it,
then using the device only requires a suitable entry in the iconfig
file (~/bluesky/instrument/iconfig.toml). The iconfig section name
should begin with “area_detector”, and end with the device name
(e.g. “area_detector.eiger”). The device name will be used to retrieve
the device later from the instrument registry.

The key “prefix” should list the IOC prefix, minus the trailing
“:”. The key “device_class” should point to a subclass of ophyd’s
DetectorBase class that is
defined in haven.instrument.area_detector.

[area_detector.eiger]

prefix = "dp_eiger_xrd91"
device_class = "Eiger500K"





Once this section has been added to iconfig.toml, then the device
can be loaded from the instrument registry. No special configuration
is generally necessary.

>>> import haven
>>> haven.load_instrument()
>>> det = haven.registry.find("eiger")
>>> plan = haven.xafs_scan(..., detectors=[det])





Usually, no special configuration is needed for area detectors. By
default it will save HDF5 and TIFF files for each frame. The filenames
for these TIFF and HDF5 files will be stored automatically to the
database. The outputs of the stats plugins will also be saved.


Warning

It is up you to make sure the file path settings are correct for
the HDF5 and TIFF NDplugins. Also, ensure that the routing is
correct for the ROI and STATS NDplugins.




Warning

The first time you stage the device after the IOC has been
restarted, you may receive an error about the plugin not being
primed. The means that the plugin does not know the size of the
image to expect since it has not seen one yet. The solution is to
open the caQtDM panels for the detector, ensure the corresponding
plugins are enabled, and then manually acquire a frame.







            

          

      

      

    

  

    
      
          
            
  
Making Changes to Haven and Contributing

Two Scenarios are likely when proposing changes to Haven:


	New feature or bugfix written in a development environment (preferred)


	Troubleshooting the beamline during beamtime





From a Development Environment

The preferred way to modify Haven is to fork the main repository on
github, make changes on a new branch, and then submit a pull request
back to the main repository. This section assumes you have an active
github account (if not, sign up for one first).

The following steps are only required the first time you work on
Haven. Once done, the forked repository and local environment can be
reused.


	Install a git client on your local computer (e.g. git [https://git-scm.com/download/] or  Github Desktop [https://desktop.github.com/])


	Create a fork of the main Haven repository [https://github.com/spc-group/haven]


	Clone the forked repository to your local computer (e.g. git clone git@github.com:canismarko/haven.git)


	Install an anaconda-like distribution environment (mamba-forge [https://mamba.readthedocs.io/en/latest/installation.html] is recommended)


	Create a new conda environment from environment.yml (e.g. mamba env create -n haven -f haven/environment.yml)


	Activate the newly created conda environment (e.g. mamba activate haven)


	Install haven in the environment (pip install -e "haven[dev]")


	Verify that the test-suite passes




The following steps should then be performed every time a new feature
is being added or bug is being fixed.


	Sync your github fork with the main github repository


	Pull changes to your local repository (git pull)


	Create a new git branch for the task you are doing (e.g. git checkout -b area_detector_support)


	Make changes to the Haven source code as needed


	Ensure all tests pass (pytest)


	Commit changes to your local branch (git add file1.py file2.py ... and git commit)


	Push changes back to github (git push)


	Create a pull request on github to send changes back to the main repository.





Running Tests

Pytest is the recommended runner for Haven. Once the environment is
properly setup, the tests can be run using:

$ pytest





pytest should not report any errors or failures, though skipped,
xfailed, and warnings are expected.

While running the tests, devices created using
make_device() will be replaced
with simulated devices using Ophyd’s sim module. This means that
load_instrument() can be called without
hardware being present, and the corresponding fake devices can be
found in the haven.registry.

Additionally, some pytest fixtures are provided that create simulated
devices, (e.g. ion chambers) and can be used directly in your tests.

More details can be found in the file haven/tests/conftest.py.




From the Beamline


Warning

This section is intended for qualified beamline staff. Users are
not authorized to make changes to the beamline software without
staff involvement.

If at all possible, changes should be made through a development
environment as described above.



User support often requires changes to be made quickly from the
beamline computers.

Git is our version control software. It interacts with github, and
allows changes to the source code to be tracked and managed.

Before modifying Haven, create a new branch using git. This will
allow changes to be undone or pushed to github for use at other
beamlines. First we will create the new branch, then we will check it
out to begin working on it.

$ cd ~/haven
$ git branch broken_shutter_workaround
$ git checkout broken_shutter_workaround





Now modify the Haven scripts as needed to get the beamline
running. Once the changes are complete, commit them to version
control. If new files have been added, then we have to inform
git that they should be included, for examples:

$ git add haven/shutter_workaround.py





Then commit the changes:

$ git commit -a -m "Workaround for the shutter not also closing when requested."





If you see black...Failed, then you need to run the command
again. Black is an add-on that enforces its own code format so that we
can focus on the important stuff, and it runs every time changes are
committed. If code needs to be reformatted, it stops the commit and
fixes the formatting. Attempting the commit again with the reformatted
code usually works.

The -a option tells git to automatically include all files that
have been changed. The -m option lets us include a short message
describing the commit. Please write descriptive commit
messages. For longer messages, omit the -m option (just git commit
-a) and a text editor will appear.

Now the new branch can be pushed to github with

$ git push -u origin delete_me





The -u option is only needed the first time: it tells git to
connect the new branch to github (origin).



Design Defense

An important consideration is how to manage changes to the code-base
in a way that satisfies several goals:


	maximize reuse of code between beamlines (9-BM, 20-BM, and 25-ID)


	support rapid troubleshooting at the beamline


	control deployment of new features among the beamlines


	encourage documentation and testing




Rapid troubleshooting necessarily leads to the code-base being in an
untested state, and so these changes should not automatically apply to
the code-base in use at another beamline.

The idea presented here is to have each beamline own a local copy of
the haven repository. Changes made at the beamline should ideally be
made to a separate branch. If the change is worth keeping it can be
committed along with documentation and tests, and the new branch can
be merged into the main branch.

Getting those changes to the other beamlines can be done whenever no
experiments are taking place there. We can pull the changes from
github, and run the system tests.

Using a common network folder for the scripts would satisfy
requirements 1 and 2, but not 3 and 4. Having entirely separate sets
of scripts would satisfy requirement 2, but not 1, 3, or 4. The
approach described here aims to strike a balance between the 4
requirements.





            

          

      

      

    

  

    
      
          
            
  
Configuration Files
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Motivation

Haven’s goal is to provide support for all of the spectroscopy
beamlines. However, each beamline is different, and these
differences are managed by a set of configuration files, similar
to the .ini files used in the old LabView solution. To keep the
complexity of these configuration files manageable, Haven gets much of
the needed information from the IOCs directly.

Haven/Firefly should always load without a specific configuration
file, but will probably not do anything useful.



Checking Configuration

If Haven is installed with pip, the command haven_config can be
used to read configuration variables as they will be seen by Haven:

$ haven_config beamline
{'is_connected': False, 'name': 'SPC Beamline (sector unknown)'}
$ haven_config beamline.is_connected
False







Configuration File Priority

There are several sources of configuration files, described in detail
below. They are loaded in the following order, with lower numbers
taking precedence over higher numbers.


	Files listed in the $HAVEN_CONFIG_FILES


	~/bluesky/instrument/iconfig.toml (for backwards compatibility)


	~/bluesky/iconfig.toml (best place)


	iconfig_default.toml packaged with Haven




Unless there’s a good reason to do otherwise, most beamline
configuration belongs in ~/bluesky/iconfig.toml.

For example, to enable support for our Universal Robotics robot
Austin to 25-ID-C, open the file ~/bluesky/iconfig.toml and add
the following:

[robot.Austin]
prefix = "25idAustin"






Note

The prevent accidental changes, the bluesky configuration files may
not be writable by the user accounts at the beamline. For example,
at 25-ID, the user account does not have permission to write to
~/bluesky/iconfig.toml so changes must be made as the staff
account.




HAVEN_CONFIG_FILES Environment

If the environmental variable HAVEN_CONFIG_FILES is set to a
comma-separated list of file path, then these files will take
priority, with later entries superseding earlier entries.



~/bluesky/iconfig.toml

The file ~/bluesky/iconfig.toml will be read if it is
present. This is the best place to put beamline-specific
configuration.

The file ~/bluesky/instrument/iconfig.toml is also read for
backwards compatibility. It should not be used for new deployments,
and support for it may be removed without warning.



iconfig_default.toml

Haven includes an set of default configuration values in
src/haven/iconfig_default.toml. This is mainly so that Haven and
Firefly can still run during development without a dedicated
configuration file. It also serves as a starting point for deploying
Haven to a new beamline. See the section on testing below for
suggestions on how to add default configuration.




Development and Testing

While adding features and tests to Haven, it is often necessary to
read a configuration file, for example when testing functions that
load devices through
load_instrument(). However,
the configuration that is loaded should not come from a real beamline
configuration or else there is a risk of controlling real hardware
while running tests.

To avoid this problem, pytest modifies the configuration file
loading when running tests with pytest:


	Ignore any config files besides iconfig_default.toml.


	Add iconfig_testing.toml to the configuration




Additionally, all load_motors() style functions should accept an
optional config argument, that will determine the configuration
instead of using the above-mentioned priority.

If a feature is added to Haven that would benefit from
beamline-specific configuration, it can be added in one of two places.


	src/haven/iconfig_default.toml
	This is the best choice if the device or feature is critical to the
operation of Haven and/or Firefly, such as the beamline scheduling
system. The values listed should still not point at real hardware,
but should be sensible defaults or dummy values to allow Haven to
function.



	src/haven/iconfig_testing.toml
	This is the best choice if the device or hardware is optional, and may
or may not be present at any given beamline, for example,
fluorescence detectors. This configuration should not point to real
hardware.







Example Configuration

Below are some examples of configuration that can be re-used for new
devices support or beamline setup.


iconfig_default.toml

# Defaults go here, then get updated by toml loader
[beamline]

name = "SPC Beamline (sector unknown)"
is_connected = false

[facility]

name = "Advanced Photon Source"
xray_source = "insertion device"

[database.databroker]

catalog = "bluesky"

# Cameras
# =======

[camera]

imagej_command = "imagej"








iconfig_testing.toml

[bss]

prefix = "255idc:bss"
beamline = "255-ID-C"

[xray_source]

type = "undulator"
prefix = "ID255:"

[queueserver]
kafka_topic = "s255idc_queueserver"
control_host = "localhost"
control_port = "60615"
info_host = "localhost"
info_port = "60625"

[database.tiled]

uri = "http://localhost:8337/"
entry_node = "255id_testing"

[shutter]
prefix = "PSS:99ID"

[shutter.front_end_shutter]

hutch = "A"
# open_pv = "PSS:99ID:FES_OPEN_EPICS.VAL"
# close_pv = "PSS:99ID:FES_CLOSE_EPICS.VAL"
# status_pv = "PSS:99ID:A_BEAM_PRESENT"

[shutter.hutch_shutter]

hutch = "C"
# open_pv = "PSS:99ID:SCS_OPEN_EPICS.VAL"
# close_pv = "PSS:99ID:SCS_CLOSE_EPICS.VAL"
# status_pv = "PSS:25ID:C_BEAM_PRESENT"

[undulator]

ioc = "id_ioc"

[monochromator]

ioc = "mono_ioc"
ioc_branch = "UP"  # For caQtDM macros


[ion_chamber]

[ion_chamber.scaler]
prefix = "scaler_ioc"
channels = [2]

[ion_chamber.preamp]
prefix = "preamp_ioc"

[ion_chamber.voltmeter]
prefix = "255idc:LabjackT7_"  # Don't include the labjack number

# Motors
# ======
# 
# Add a new section for each IOC (or IOC prefix) that has motors
# matching the format {prefix}:m1. The heading of the subsection
# ("VME_crate" in the example below) is a human-readable name that
# will become a label on the Ophyd Device. *num_motors* determines how
# many motors will be read. The example below will load three motors
# with PVs: "vme_crate_ioc:m1", "vme_crate_ioc:m2", and
# "vme_crate_ioc:m3".

[motor.VME_crate]
prefix = "255idVME"
num_motors = 3

# Keys for camera definitions must begin with "cam" (e.g. "camA", "camB")
[camera.camA]

name = "s25id-gige-A"
description = "GigE Vision A"
prefix = "255idgigeA"

[aerotech_stage.aerotech]

prefix = "255idc"
delay_prefix = "255idc:DG645"
pv_vert = ":m1"
pv_horiz = ":m2"

[power_supply.NHQ01]

prefix = "ps_ioc:NHQ01"
n_channels = 2

[slits.KB_slits]

prefix = "vme_crate_ioc:KB"
device_class = "BladeSlits"

[slits.whitebeam_slits]
# A single rotating aperture slit, like the 25-ID white/pinkbeam slits
prefix = "255ida:slits:US:"
device_class = "ApertureSlits"
pitch_motor = "m33"
yaw_motor = "m34"
horizontal_motor = "m35"
diagonal_motor = "m36"

# A bendable mirror, like the long KB at 25-ID-C
[kb_mirrors.LongKB_Cdn]
prefix = "255idcVME:LongKB_Cdn:"
horiz_upstream_motor = "m33"
horiz_downstream_motor = "m34"
horiz_upstream_bender = "m21"
horiz_downstream_bender = "m22"
vert_upstream_motor = "m46"
vert_downstream_motor = "m47"
vert_upstream_bender = "m56"
vert_downstream_bender = "m57"

# A non-bendable mirror, like the KB at 25-ID-C
[kb_mirrors.KB]
prefix = "255idcVME:KB:"
horiz_upstream_motor = "m35"
horiz_downstream_motor = "m36"
vert_upstream_motor = "m48"
vert_downstream_motor = "m49"

# A single bounch, high heat load mirror
[mirrors.ORM1]
prefix = "25ida:ORM1:"
device_class = "HighHeatLoadMirror"
bendable = false

[mirrors.ORM2]

prefix = "25ida:ORM2:"
device_class = "HighHeatLoadMirror"
bendable = true

# An optical table with two vertical motors
[table.downstream_table]
prefix = "255idcVME:"
transforms = "table_ds_trans:"
pseudo_motors = "table_ds:"
upstream_motor = "m21"
downstream_motor = "m22"

# An optical table with one vertical motor and one horizontal motor
[table.upstream_table]
prefix = "255idcVME:"
vertical_motor = "m26"
horizontal_motor = "m25"

[area_detector.sim_det]

prefix = "255idSimDet"
device_class = "SimDetector"

[lerix.lerix.rowland]

x_motor_pv = "255idVME:m1"
y_motor_pv = "255idVME:m2"
z_motor_pv = "255idVME:m3"
z1_motor_pv = "255idVME:m4"

[heater.capillary_heater]

prefix = "255idptc10"
device_class = "CapillaryHeater"

[robot.A]
prefix = "255idAustin"

# Managed IOC control PVs
[iocs]
255idb = "glados:ioc255idb"
255idc = "glados:ioc255idc"

[fluorescence_detector]

[dxp.vortex_me4]

prefix = "vortex_me4"
num_elements = 4

[dxp.canberra_Ge7]

prefix = "20xmap8"
num_elements = 4

[xspress.vortex_me4_xsp]

prefix = "vortex_me4_xsp"
num_elements = 4











            

          

      

      

    

  

    
      
          
            
  
Defining a New Motor




            

          

      

      

    

  

    
      
          
            
  
Energy Scans (XAFS)


xafs_scan() for Straight-Forward XAFS Scans

The xafs_scan() is a bluesky plan
meant for scanning energy over a a number of energy ranges, for
example the pre-edge, edge, and EXAFS signal of a K-edge.

The function accepts an arbitrary number of parameters for defining
the ranges. The parameters are expected to provide energy step sizes
(in eV) and exposure times (in sec) between the boundaries of the
ranges. They should be passed following the pattern:

energy, step, exposure, energy, step, exposure, energy, ...

An example across the Nickel K-edge at 8333 eV could be:

RE(xafs_scan(8313, 2, 1, 8325, 0.5, 2, 8365, 10, 1.5, 8533))





RE is the bluesky RunEngine, which
should already be imported for you in the ipython environment.


Absolute vs. Relative Scans

In many cases, it is more intuitive to describe the energy ranges
relative to some absorption edge (E0). If this E0 energy is given
directly to xafs_scan() via the E0
argument, then all energy points will be interpreted as relative to
this energy. The same scan from above would be:

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, 10, 1.5, 200, E0=8333))








Defining Scans in K-Space

For extended structure scans (EXAFS), it may be more helpful to define
the EXAFS region in terms of the excited electron’s wavenumber
(k-space). This can be done with the keyword arguments k_step,
k_exposure, and k_max. Providing E0 is necessary, since
otherwise wavenumbers will be calculated relative to 0 eV, and will
not produce sensible results.

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, k_step=0.02, k_max=12, k_exposure=1., E0=8333))





Better quality results can sometimes be achieved by setting longer
exposure times at higher k. The k_weight parameter will scale the
exposure time geometrically with k. k_weight=0 will produce
constant exposure times, and if k_weight=1 then exposure will
scale linearly with k.

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, k_step=0.02, k_max=12, k_exposure=1., k_weight=1, E0=8333))







energy_scan() for More Sophisticated Scans

For extra flexibility, use the
energy_scan() plan, which accepts
a sequence of energies to scan. For example, to scan from 8325
to 8375 eV in 1 eV steps:

energies = range(8325, 8376, step=1)
RE(energy_scan(energies))





Notice the range ends at 8376 eV instead of 8375 eV, since the last
value is not included when using a range.

The exposure time can also be given. exposure can either be a
single number to be used for all energies, or a sequence of numbers
with the same length as energies, and each energy will use the
corresponding exposure:

import numpy as np
energies = range(8325, 8376, step=1)
exposures = np.linspace(0.5, 5, num=len(energies))
RE(energy_scan(energies), exposure=exposures)





Building a more complicated set of energies can be made simpler using
the ERange helper class:

energies = ERange(8325, 8375, E_step=1).energies()
RE(energy_scan(energies))





To make things even easier,
energy_scan() can accept energy
range objects directly:

energies = [
    8300, 8320,  # Individual energies are okay too, you can mix and match
    ERange(8325, 8375, E_step=0.5),
    ERange(8375, 8533, E_step=5),
]
RE(energy_scan(energies))





Other than including the ending energy in the list, this usage does
not provide considerable value. However, the inclusion of multiple
energies with different exposure times makes the value more clear,
since energy_scan will automatically replace an
ERange instance with the result of
the instance’s energies()
method, and add equivalent entries into exposure based on the
instance’s exposures() method.

energies = [
    ERange(8325, 8375, E_step=0.5, exposure=1.5),
    ERange(8375, 8533, E_step=5, exposure=0.5),
]
RE(energy_scan(energies))





There is also a similar KRange that
works similarly except using electron wavenumbers (k) instead of X-ray
energy. This allows the energies to be given in a more intuitive way
for EXAFS:

energies = [
    ERange(-50, 50, E_step=0.5, exposure=1.5),
    ERange(50, 200, E_step=5, exposure=0.5),
    KRange(200, 14, k_step=0.05, , k_weight=1., exposure=1.),
]
RE(energy_scan(energies, E0=8333))





Notice that the energies are now given relative to the edge energy
E0 (the nickel K-edge in this case). This is almost always necessary
when using a KRange instance, since
otherwise the corresponding energies would be relative to a free,
zero-energy electron, instead of core electrons. E0 can also be
given as a string, in this case E0="Ni_K".

At this point, we have largely replicated the behavior of
xafs_scan() described above. In
fact, xafs_scan() is a wrapper
around energy_scan() whose main
purpose is to take the parameters in the form of (energy, step,
exposure, energy, ...), and convert them to
ERange and
KRange instances.



Changing Detectors or Positioners

For more sophisticated scans, it may be necessary to include
additional detectors. By default,
xafs_scan() and
energy_scan() will measure the ion
chambers as detectors (those returned by
haven.registry.findall("ion_chambers")). Both plans accept the
detectors argument, which can be any of the following:


	A list of devices.


	A list of names/labels of devices.


	A single name/label for devices.




Options 1 and 2 can be intermingled. For example:

eiger = haven.registry.find("eiger")
detectors = [eiger, "ion_chambers"]
plan = haven.xafs_scan(..., detectors=detectors)





Supplying the detectors argument will ensure that the detectors are
captured in the data streams, but it may still be necessary to
specify positioners for setting the exposure time. By default,
only the ion chambers will receive have their exposure time set. This
is especially important when using the k_weight parameter to
xafs_scan() or the exposure
parameter to energy_scan().

Both plans accept a time_positioners argument for this purpose,
which should be a list of entries similar to those accepted for
detectors described above but with positioners for the various
detectors. Extending the above example:

eiger = haven.registry.find("eiger")
detectors = [eiger, "ion_chambers"]
time_positioners = [eiger.cam.acquire_time, "ion_chambers.exposure_time"]
plan = haven.xafs_scan(..., detectors=detectors, time_positioners=time_positioners)





The above example actually uses all of the ion chambers’ exposure
times as separate positioners. This will work but produces extra
messages and may be confusing. Since counting is handled by the
scaler, any of the ion chambers on the same scaler can be used as a
time positioner:

ion_chambers = haven.registry.findall("ion_chambers")
time_positioners = [eiger.cam.acquire_time, ion_chambers[0].exposure_time]
plan = haven.xafs_scan(..., time_positioners=time_positioners)





Lastly, we may want to specify a different energy position for
example when using a secondary monocrhomator. By default the “energy”
positioner is used, which is a pseudo-positioner that controls both
the monochromator and the insertion device (if present). This
positioner temporariy disables the EPICS-based pseudo-motor in use
at sector 25-ID since the done status is not properly reported for the
insertion device when using the EPICS implementation.

The energy_positioners argument accepts similar types as the
previous options just discussed, and each one will be set to the
energy in electron-volts at each point. For example, to scan only the
monochromator energy we could do:

mono_energy = haven.registry.find("monochromator.energy")
plan = haven.energy_scan(..., energy_positioners=[mono_energy])





or equivalently:

plan = haven.energy_scan(..., energy_positioners="monochromator.energy")









            

          

      

      

    

  

    
      
          
            
  
Fluorescence Detectors


Table of Contents


	Fluorescence Detectors


	Specifying Detectors in Configuration


	Common Behavior


	Creating Devices


	Managing Elements and ROIs






	Xspress 3


	XIA DXP (XMAP)










Specifying Detectors in Configuration

To add new detectors to the beamline, new sections should be added the
iconfig.toml file. Each section should be labeled
[<class>.<name>], where <class> specifies which interface is
present ("dxp" for XIA DXP or "xspress" for Xspress3), and
<name> becomes the device name. prefix is the PV prefix for the
EPICS IOC, and num_elements specifies the number of detector
elements.

[dxp.vortex_me4]

prefix = "20xmap4b"
num_elements = 4

[xspress.vortex_ex]

prefix = "dp_xsp3_2"
num_elements = 1





The device can then be retrieved from the instrument registry for use
in bluesky plans:

import haven

# Get individual fluorescence detectors
my_detector = haven.registry.find(name="vortex_me4")
another_detector = haven.registry.find(name="vortex_ex")

# Get all fluorescence detectors of any kind (e.g. DXP, Xspress3, etc.)
detectors = haven.registry.findall(label="fluorescence_detectors")







Common Behavior

Fluorescence detectors are implemented as
Xspress3Detector and
DxpDetector Ophyd device
classes. They are written to have a common Ophyd interface so that
clients (e.g. Firefly) can use fluorescence detectors interchangeably.


Creating Devices

By default, devices created from these device classes include one MCA
element, available on the mcas attribute. The recommended way to
create a fluorescence detector device directly is with the
load_xspress() and
load_dxp() factory functions:

from haven import load_xspress

det = load_xspress(name="vortex_me4",
                   prefix="20xmap4b",
                   num_elements=4)
det.wait_for_connection()





Alternately, to make a dedicated subclass with a specific number of
elements, override the mcas attributes:

from haven.instrument import xspress

class Xspress4Element(xspress.Xspress3Detector):
    mcas = xspress.DDC(
        xspress.add_mcas(range_=range(4)),
        kind=(Kind.normal | Kind.config),
        default_read_attrs=["mca0", "mca1", "mca2", "mca3"],
        default_configuration_attrs=["mca0", "mca1", "mca2", "mca3"],
    )







Managing Elements and ROIs


Note

Not all fluorescence detector IOCs agree on how to number MCAs and
ROIs. To maintain a unified interface, Haven uses the convention to
start counting from 0 regardless of the IOC. As such, the haven
device signals may be misaligned with the PVs they map to.

For example on a DXP-based IOC, an ophyd signal
det.mcas.mca1.rois.roi1 will have a PV like
xmap_4b:MCA1.R0.



By default all elements (MCAs) will collect spectra, and all ROIs
will save aggregated values. While this setup ensures that no data
are lost, it also creates a large number of signals in the database
and may make analysis tedious. Most likely, only some ROIs are
meaningful, so those signals can be identified by giving them the
hinted kind.

https://blueskyproject.io/ophyd/user/reference/signals.html#kind

During the staging phase (in its
stage()
method), each ROI will check this signal and if it is true, then it
will change its kind to hinted. When unstaging, the signal is
reset to its original value.

Individual ROIs can be marked for hinting by setting the
use signal:

from haven import load_xspress

# Create a Xspress3-based fluorescence detector
det = load_xspress(name="vortex_me4",
                   prefix="20xmap4b",
                   num_elements=4)

# Mark the 3rd element, 2nd ROI (0-indexed)
det.mcas.mca2.rois.roi1.use.set(1)





Behind the scenes, to track the state of
use we add a “~” to the start
of the value in the
label() signal if
use() is false.

Marking multiple ROIs on multiple elements is possible using the
following methods on the
XRFMixin object:


	enable_rois()


	disable_rois()




These methods accepts an optional sequence of integers for the indices
of the elements or ROIs to enable/disable. If not ROIs or elements are
specified, the methods will operate on all ROIs or elements
(e.g. det.disables_rois() will disable all ROIs on all elements.

from haven import load_xspress

# Create a Xspress3-based fluorescence detector
det = load_xspress(name="vortex_me4",
                   prefix="20xmap4b",
                   num_elements=4)

# Mark all ROIs on the third and fifth elements
det.enable_rois(elements=[2, 4])

# Unmark the first, eight, and fifteeth elements
det.enable_rois(rois=[0, 7, 14])

# Unmark the third ROI on the second element
det.enable_rois(rois=[2], elements=[1])








Xspress 3

Support for Quantum Detectors’ Xspress3 Family of detectors is
provided by the Xspress3Detector
base class. The EPICS support for Xspress3 detectors is based on the
EPICS area detector module, and so the
Xspress3Detector is a customized
ophyd.DetectorBase.



XIA DXP (XMAP)

DXP (XMAP, Mercury, Saturn) electronics use the bluesky multi-channel
analyzer (MCA) device, packaged in Haven as the
DxpDetector class.

The DXP electronics are not yet compatible with fly-scanning. The DxpDetector
does implement the
kickoff() and
complete() methods, but
does not yet handle data collection. This is because the data are
reported as a byte stream that must first be decoded. The DXP manual
describes the structure of this byte-stream, so in principle it is
possible to parse this in the
collect() method.
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Fly scanning is when detectors take measuments from a sample while in
motion. Creating a range of measurements based on user specified
points. This method is generally faster than traditional step
scanning.

Flyscanning with Bluesky follows a general three method process


	Kickoff: Initializes flyable Ophyd devices to set themselves up and
start scanning


	Complete: Continously checks whether flight is occuring until it is finished


	Collect: Retrieves data from fly scan as proto-events




Most of the work that is done for fly scanning is done with
Ophyd. Bluesky’s way of fly scanning requires the Ophyd flyer device
to have the kickoff(), complete(), collect(), and
collect_describe() methods. Any calculation or configuration for
fly scanning is done inside the Ophyd device.


Plans for Fly-Scanning

Haven provides several fly-scanning plans. Each one assumes that
flyers implement Ophyd’s
FlyerInterface. Flyer’s must also have
component signals for defining the parameters of the fly scan. These
signals do not need to have EPICS PVs; they can just be regular
Signal components:


	start_position: center of the first bin to be measured, in motor engineering units


	end_position: center of the last bin to be measured, in motor engineering units


	step_size: width of each bin, in engineering units





fly_scan()

Haven’s fly_scan() mimics the Bluesky
scan() plan, except that it only accepts one
motor and accompanying arguments. Both detectors and motor must
implement Ophyd’s FlyerInterface. Notice
that dwell_time is
set separately.

import bluesky.plan_stubs as bps
import haven
haven.load_instrument()
RE = haven.run_engine()
# Prepare devices
aerotech = haven.registry.find("aerotech")
ion_chambers = haven.registry.findall("ion_chambers")
RE(bps.mv(aerotech.horiz.dwell_time, 0.2))
# Execute the fly scan
plan = haven.fly_scan(ion_chambers, aerotech.horiz, -1000, 1000, num=101)
RE(plan, sample_name="...", purpose="...")





This plan only works for one flyer motor since flying two motors from
Bluesky does not ensure consistent timing between the flyers. If
multiple motors should be flown following the inner_product pattern,
they should be wrapped in a new Flyer object that can coordinate both
motor trajectories.



grid_fly_scan()

Haven’s grid_fly_scan() provides an
N-dimension scan over all combinations of multiple axes, mimicing
Bluesky’s grid_scan() plan. The first motor
listed will be the slow scanning axis, and the last motor listed will
be the flyer. Each motor must have an accompanying start, stop,
and num arguments:

from bluesky import plans as bp, plan_stubs as bps
import haven

# (start, stop, num)
fly_params = (-100, 100, 21)
step_params = (-100, 100, 5)
dwell_time = 0.1

haven.load_instrument()

# Find the devices
ion_chambers = list(haven.registry.findall("ion_chambers"))
aerotech = haven.registry.find("aerotech")
# Create the run engine
RE = haven.run_engine()
# Set the dwell time per pixel separately
RE(bps.mv(aerotech.horiz.dwell_time, dwell_time))
# Set up the plan
plan = haven.grid_fly_scan(ion_chambers,
                           aerotech.vert, *step_params,
                           aerotech.horiz, *fly_params,
                           snake_axes=True)
# Run the plan
RE(plan, purpose="testing fly scanning", sample="None")






Note

The flyer’s
dwell_time
component is set outside of
grid_fly_scan(). This is in keeping with
Bluesky’s approach on setting acquisition times, where each device
has its own concept of acquisition time and so these need to be
explicitly set as determined by the hardware.






Aerotech-Stage

The Aerotech stage has a number of axes, for example, .horiz and
.vert. Each is a sub-class of EpicsMotor,
adding the FlyerInterface. Each of these
axes can be used as a flyer in the plans for fly-scanning.


Position-Synchronized Output (PSO)

The Ensemble controller can be configured to emit voltage pulses at
fixed distance intervals. These position-synchronized output (PSO)
pulses are used to trigger hardware to begin a new bin of
measurements. The Ophyd flyer device sends comands to the ensemble
controller to configure its settings. PSO pulses are sent in the form
of a 10us on pulse. These pulses are then set to only happen every
multiple integer of encoder step counts, corresponding to the Flyer
device’s step_size
signal. When possible, the pulses are set to only ocur within the
range of scanning.


[image: Diagram of PSO pulse timing.]
Diagram of PSO pulse timing. Encoder counts are an integer number
of the smallest unit the controller can measure
(e.g. nanometers). The distance from one pulse to the next equates
to new bin on the scaler. Encoder window gives a range outside of
which PSO pulses will be suppressed. Bottom line shows relative
positions of key calculated and supplied parameters.



While the scaler can use these raw pules to create a bin, other
detectors have other requirements. A DG645 delay generator is used to
transform the pulses to match the various detectors. The trigger
signal going to the scaler also goes through the delay generator, but
the length of the delay matches the duration of the PSO pulse, so
effectively output AB from the delay generator repeats the PSO
pulses.


[image: ../_images/fly_scan_block_diagram.svg]
Control flow diagram of how hardware is connected for fly
scanning. The trigger output mimics the trigger input on the
DG645 delay generator, while the length of the delay for the
falling edge of the gate signal is based on the dwell time of the
scan.





Calculated Components Before Scan

The aerotech flyer calculates the following components: slew speed,
a taxi start and end position, a PSO start and end position, the window
start and end in encoder counts, and the step size in encoder count.

Because step size and dwell time are input parameters, that means
points must be captured while the stage moves at a constant velocity
otherwise the measurments will have distorted lengths.

The Taxi start and end are the physical start and end positons of the
sample stage. This is to allow the stage to accelerate to target
velocity needed during scan.

The encoder window start/end is set to create a range for pulses during the scan.
As well as the encoder step size which tells the PSO when to send pulses.

The PSO start/end determines the start of the first measument and the end
of the last.

An array of PSO positions is also created to provide the location of each
measured point.



Physical Fly scan process


	Moves to PSO start


	Arms PSO and starts encoder count


	Moves to taxi start


	Begins accelerating until reaching speed at PSO start and starts flying


	PSO triggers detectors to take measurments until reaching a step


	Continues flight taking measurments until reaching the end of the
last measument at PSO end


	Finally comes to a stop at taxi end after deccelerating







Notes

If a scan crashes the velocity will need to be changed back to its previous
value in the setup caQtDM, otherwise the velocity will likely be very slow.





            

          

      

      

    

  

    
      
          
            
  
Hardware Triggering

For simple devices, it is enough to let bluesky and ophyd handle
triggering the detector. In our case, though, many detectors are to be
triggered simultaneously using one piece of hardware.

An example is using the scaler to trigger multiple pieces of
hardware. The SIS3820 multi-channel scaler can measure multiple
channels of input with one trigger. If each detector is an ophyd
Device object, then running a bluesky plan with multiple of these
devices on the same scaler will result in the scaler being triggered
multiple times (once for each device in the plan).

Additionally, the scaler presents the counting gate on one of its
control output lines. This can be fed into the Xspress3 electronics
that power many of our Vortex detectors. Bluesky by default will try
to trigger the Xspress3 directly. The Device definition for the
Vortex detector could trigger the scaler itself, but this creates yet
another trigger signal to the scaler, as described above.

The solution is to use the
ScalerTriggered mixin
class. This adds a scaler_prefix argument to __init__ that
expects a channel access PV path and points to the scaler that should
be used to trigger this device. If multiple instances of
ScalerTriggered with
the same scaler_prefix are present in a bluesky plan, then the
scaler is only triggered once for all the devices.

scaler_prefix can be omitted, in which case the prefix argument
will be used for the scaler prefix.

from haven.instrument.scaler_triggered import ScalerTriggered
from ophyd import Device

class VortexDetector(ScalerTriggered, Device):
    ...

vortex = VortexDetector(prefix="vortex1ioc:vortex", scaler_prefix="25idcVME:scaler1")








            

          

      

      

    

  

    
      
          
            
  
Instrument Registry for Looking Up Components

The instrument registry in Haven provides a way to keep track of
the devices (including components, motors, signals, etc.) that have
been defined across the package. In order for the registry to know of
a device, that device must first be registered. Unless you are
defining your own devices or components, this will have already been
done.

It is a goal of this project that executing simple scans will not
require you to know about or interact directly with the registry.
However, more advanced scans, like using area detectors from the
command line, may require you to look up devices in the registry prior
to building the scan.

This documentation is provided primarily for developers who are
planning to register their own devices and components.


Looking Up Registered Devices/Components

In many cases, Haven will look up devices behind the scenes when
executing a plan. However, it is possible to look up devices directly
using the registry.

The registry uses the built-in concept of device labels in Ophyd. The
registry’s
find()
and
findall()
methods allows devices to be looked up by label or device name. For
example, assuming four devices exist with the label “ion_chamber”,
then these devices can be retrieved using the registry:

from haven import registry

ion_chambers = registry.find(label="ion_chambers")
assert len(ion_chambers) == 4





Many plans in Haven accept lists of detectors and positioners. In some
cases, it is possible to pass a string as these parameters as well, in
which case the plan will assume that the string is a device name or
label and find all registered devices that match. The following will
execute the energy_scan() plan
using any device initialized with labels={"ion_chambers"} and
known to the registry.

from haven import energy_scan

RE(energy_scan(..., detectors="ion_chambers"))







Looking Up Sub-Components by Dot-Notation

For simple devices, the full name of the sub-component should be
enough to retrieve the device. For example, to find the signal
preset_time on the device named “vortex_me4”, the following may work fine:

preset_time = haven.registry.find("vortex_me4_preset_time")





However, if the component is lazy and has not been accessed prior
to being registered, then it will not be available in the
registry. Sub-components can instead be accessed by dot
notation. Unlike the full device name, dot-notation names only resolve
when the component is requested from the registry, at which point the
lazy components can be accessed.

For example, area detectors use many lazy components. If sim_det
is an area detector with a camera component sim_det.cam, then the
name of the gain channel is “sim_det_cam_gain”, however this is a lazy
component so is not available. Instead, retrieving the device by
haven.registry.find("sim_det.cam.gain") will first find the area
detector (“sim_det”), then access the cam attribute, and then cam’s
gain attribute. This has the side-effect of instantiating the lazy
components.



Registering Individual Devices

Before looking up a device in the registry, it is necessary to inform
the registry about the device. The simplest way to do this is using
the
register()
method on the registry.

from ophyd import Device
from haven import registry

# Create the device instance
I0 = Device("PV_PREFIX", name="I0", labels={"ion_chamber"})
# Register the device with the registry
registry.register(I0)

# Or more concisely in 1 line
It = registry.register(Device("PV_PREFIX", name="It", labels={"ion_chamber"}))







Registering Device Classes

If you are creating many instances of a custom Device subclass,
registering each instance individually can be repetitive. Haven allows
you to modify the class itself so that each instance is automatically
registered. This is accomplished using the
register()
method as a decorator on the class:

from ophyd import Device
from haven import registry

@registry.register
class IonChamber(Device):
    ...

I0 = IonChamber(..., labels={"ion_chamber"})





This is equivalent to the examples for registering individual devices
above.



Creating Your Own Registry

There is nothing special about
haven.instrument.instrument_registry.registry; it is simply
an instance of
haven.instrument.instrument_registry.InstrumentRegistry
created during module import as a default. Most of the devices and
components defined in Haven register themselves with this default
registry. However, there’s nothing to prevent you from creating your
own registry:

from haven import InstrumentRegistry
from ophyd import Device

# Create an empty registry
my_registry = InstrumentRegistry()

# Create a new registered device object
my_device = my_registry.register(Device("PV_PREFIX", name="My Device", labels={"custom"}))

# Now look for this device in the registry
my_devices = my_registry.find(label="custom")







Design Defense

This pattern touches on behavior already present in bluesky and
apstools. However, there are some quirks that make these
implementations unsuitable for use in Haven.

Bluesky provides the %wa IPython magic to list devices (apstools
has a similar listobjects() function). While conventient when
working in an IPython environment, this comes with a number of
drawbacks for Haven. First, %wa only knows about devices listed in
the local context of the IPython interpreter. If a device is defined
in the file devices.py, the method of importing will determine
whether the device is visible or not:


devices.py

 from ophyd import Device

 I0 = Device("PV_PREFIX", name="I0", labels={"ion_chamber"})








IPython shell

 >>> import devices
 >>> print(devices.I0)
 >>> %wa  # This will not include I0
 >>> from devices import I0
 >>> print(I0)
 >>> %wa  # Now I0 is included







This detail makes it impossible to run plans without knowing about all
the devices and importing them individually, or else using star
imports (e.g. from devices import *) which make tracing imports
difficult and leads to cluttered namespaces.

Furthermore, this approach is tightly coupled to IPython, since it
relies on the IPython shell’s namespace to find devices. The above
approach is not possible with vanilla CPython.

It may be possible to use locals() instead of the IPython shell
namespace, solving the reliance on IPython. This still leaves the
issue of only having access to devices imported directly into the
shell’s namespace, however. This could be solved by recursively
descending into imported modules looking for devices. Here, PEP 20
steers us towards the registry-based solution, where we must
explicitely define a device as being included in the registry
(“explicit is better than implicit”).





            

          

      

      

    

  

    
      
          
            
  
Motor Positions

Haven is able to save the positions of one of more motors in a
database; the saved positions can then be recalled later. The
following functions are related to motor positions:


	save_motor_position()


	list_motor_positions()


	recall_motor_position()
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Saving a Motor Position

To save the position of one or more motors, call
save_motor_position() with the motors
to be saved as arguments. These arguments can either be the name of a
previously instantiated ophyd.Device object, or the
Device itself. A keyword-only name argument is
also necessary, which should be a short, human-readable description of
the motor position.

import haven
# An example of using the motor names to save the position
uid = haven.save_motor_position("Aerotech_vert", "Aerotech_horiz", name="CuO A")





import ophyd
import haven
# An example of using the ophyd Devices to save the position
aerotech_vert = ophyd.EpicsMotor("25idd:m1")
aerotech_horiz = ophyd.EpicsMotor("25idd:m2")
uid = haven.save_motor_position(aerotech_vert, aerotech_horiz, name="CuO A")





save_motor_position() returns the
database ID of the document that was created. This ID is the best
way to retrieve a motor position from the database later, though it
can be also be retrieved using the name argument provided it is
unique.


Saving All Motor Positions

It may be convenient to save all motor positions to the database as a
sort of checkpoint before performing some non-routine operation. This
can be done with the following line. Future work will provide a
shorted version. Remember to call
load_instrument()
first.

haven.save_motor_position(*haven.registry.findall(label="motors"), name="checkpoint before replacing monochromator")








Viewing Saved Motor Positions

The function list_motor_positions()
will print out a list of all the saved motor positions. This list also
contains the database ID for each position, in case that information
was not retained when saving the motor position originally.



Recalling a Saved Motor Position

The beamline can be set back a previously saved motor position using
the haven.motor_position.recall_motor_position()
function. This function is a bluesky-style plan, and so the plan
must be passed to a RunEngine to be effective.

The saved motor position can be retrieved using either the
ID generated when the position was saved (the uid argument), or by
the name argument that was chosen when the position was saved. If
the *name* is not unique, no guarantee is made regarding which motor
position is restored.

import haven
RE = haven.RunEngine()

# Save the motor position
uid = haven.save_motor_position("Aerotech_vert", name="start position")

# Restore the motor position
plan = haven.recall_motor_position(uid=uid)
RE(plan)







The MotorPosition Data Model

haven.motor_position.MotorPosition is a pydantic model
that represents a set of motor positions in the database. Any
attribute that has a type definition (e.g. offset: float = None)
is a data attribute and can be saved to the database.

To add a new database value, add the appropriate attribute to the
pydantic model, and modify the
save() and
load() methods to
accomodate the new database value.





            

          

      

      

    

  

    
      
          
            
  
Saving Data to XDI Files


Note

This page is intended for beamline staff. If you are a user at a
beamline using Haven, this is most likely already set up for you.



XAFS Data Interchange (XDI) is a standard file format for storing data
from individual XAFS scans in a plain-text file. Currently, Haven
supports automatic saving of energy scans using either the
energy_scan() or
xafs_scan() functions. The filename
used for saving will be generated from metadata. For more refined
control, see below for how to create
XDIWriter objects, or even creating a
customized subclass of XDIWriter.

The XDI file is opened at the start of the scan, and data are
written in real time during data acquisition, so aborted plans will
still have data saved. Halted plans will still have data saved, but
the file may remain open with write intent until the python
interpreter running Haven is closed. This was a deliberate design
choice to ensure the XDI writer keeps an exclusive lock on the file
during execution of the plan.


Using the XDIWriter

If you want to save the XDI file to specific place or pass in other
arguments, you can create your own instance of the
XDIWriter class. The first argument to
XDIWriter() should be either a file
name, a pathlib.Path object, or an open file like those
return by python’s built-in open(). The following 3 invocations
are all valid:

from haven import XDIWriter
from pathlib import Path

# Provide a regular string...
writer = XDIWriter("/path/to/my/xafs_data.xdi")

# ...or provide a Path object...
root = Path("/path/to/my/")
writer = XDIWriter(root / "xafs_data.xdi")





The filename can contain placeholders that will be filled in once
the plan starts. This works similarly to python’s format string
syntax. For example:

from haven import XDIWriter

plan = energy_scan(..., E0="Ni_K", md=dict(sample_name="nickel oxide"))
writer_callback = XDIWriter(fd="./{year}{month}{day}_{sample_name}_{edge}.xdi")
RE(plan, writer)





Assuming the date is 2022-08-19, then the filename will become
“20220819_nickel-oxide_Ni_K.xdi”.



Custom Subclasses of XDIWriter
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