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Warning: This package is intended for use primarily by beamline staff. For user operations at the beamline,
consider the firefly package.
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CHAPTER

ONE

TUTORIALS

These tutorials provide a step-by-step guide to performing specific tasks.

These guides do not cover the individual beamlines thoroughly.

This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).

1.1 Demonstration of Knife Scans

This notebook shows the following tasks: - basic of collecting a knife edge scan - loading the scan data from the
database - analyzing the knife edge scan to determine beam position and size - saving the data to disk as a csv file

First we have to import haven, the beamline control library. Haven contains most of the tools we will use. Importing it
allows us to get to the functions and classes that are defined inside.

Next, the haven.load_instrument() function will read the configuration files and scan the hardware for its config-
uration. It will then build the devices that will be used for scans. This function prints out a list of motors that it has
discovered.

Then, we create the run engine. The run engine is responsible for executing our scans and will be described in more
detail when it is used below.

Lastly we set metadata about who is running the beamline. This value will be saved in every plan executing on this run
engine. This step is optional, but will allow database queries for scans taken by a specific person.

[2]: import haven
# Load the motors and detectors
haven.load_instrument()
# The RunEngine will be responsible for executing the plans
RE = haven.RunEngine()
# (Optional) Save the initials of the current beamline operator as metadata
RE.md["operator"] = "MFW" # <- Put your initials in here

energy_energy
energy_mono_energy
I0_sensitivity_sens_level
Idk_sensitivity_sens_level
It_sensitivity_sens_level
SLT V Upper
SLT V Lower
SLT H Inb
SLT H Outb

(continues on next page)

3

/home/docs/checkouts/readthedocs.org/user_builds/haven-spc/checkouts/latest/docs/tutorials/knife_scan.ipynb


haven, Release 0.1.0

(continued from previous page)

KBH Down
KBH Up
KBV Down
KBV Up
KB Tbl H
KB Tbl V
Focus V
Focus H
Focus In Out
ADC KB Focus
SampleZ
I0 H
I0 V
Optic In Out
Optic V
Optic H

cannot connect to 25idcVME:m65.DESC

monochromator_horiz
monochromator_vert
monochromator_bragg
monochromator_gap
monochromator_roll2
monochromator_pitch2
monochromator_roll_int
monochromator_pi_int
monochromator_mode
monochromator_energy
Aerotech_vert
Aerotech_horiz

1.1.1 Running the Scan

Running a scan in bluesky is a two step process.

First, create a plan. A plan generates messages with instructions to do things like move a motor, wait for a motor to
arrive at its destination, and trigger and read a detector. To create a plan, you call a function that will generate these
messages. Calling the function doesn’t actually execute the scan. In our case, haven.knife_scan("Focus V",
-200, 200, 50) will create the plan, but the plan will not do anything unless used with a run engine.

haven.knife_scan needs to know which motor to scan over, so in the cell below we provide it with knife_motor=
"Focus V". The names of motors are the same as those printed out when loading the instrument configuration above.
The start, stop parameters determine the range that the motor will scan. If relative is False (default), then start and stop
will be absolute positions, and if relative is True, then start and stop will be relative to motor’s position at the start of
the run.

The knife scan plan also needs to know which detectors to measure. The names for the detectors are the same as the
descriptions for the EPICS channels on the scaler. By default it will use It="It" and I0="I0", but any scaler channel
can be used.

Next, execute the plan on the run engine. At the top of this document we created a run engine. Now we will use this
run engine to execute the plan. The run engine will read the messages and perform the appropriate tasks.

4 Chapter 1. Tutorials
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When the run engine finishes the plan, it will return a unique identifier (UID). This UID is the best way to retrieve the
data from the database. We will save the UID to a variable, and also print it to the page in case we want to recall it later.

[ ]: plan = haven.knife_scan(knife_motor="Focus V", start=-200, end=200, num=50,␣
→˓relative=True)
uid = RE(plan)
print(uid)

1.1.2 Loading the Data

During execution the data are saved to a mongoDB database. Haven has tools to retrieve the data, as well as fit the
knife scan to determine the beam position and size.

The load_data() function will return a data set, provided we supply the uid that we had previously recorded. It is
possible to have multiple experimental runs within a single call to the run engine, and so our variable uid from above
is actually a list of UIDs. Since there was only one run, we will just use the first (and only) entry: uid[0].

If the analysis is being done at a different time or place from running the scan, then the variable uid will probably not
be set. In this case, it is possible to provide the UID that was printed above.

The fit_step() function is used to analyze the knife scan data to determine the beam position and size. Optionally,
it will also plot the knife scan, its derivative, and the full-width at half-maximum for each. fit_step() needs the x
and y data to process, which we can get from the data we loaded from the database. The name of the knife position will
be the name of the motor you selected when running the scan. For the y position, we will calculate the transmission
( 𝐼𝑡𝐼0 ). There are several possible values for the ion chamber, so we must specify one (e.g. “I0_raw_counts”, “I0_volts”)

Optionally, the data can be saved to a text CSV file for additional analysis. First we will convert it to a pandas
DataFrame and then use panda’s to_csv() method. We will append the first segment of the UID to the filename to
descrease the likelihood that we will overwrite data.

[9]: # Uncomment this line to manually specify a UID
# uid = ["927fa7dd-e331-45ca-bb9d-3f89d7c65b17"]
# Load the data for the first (and only) UID in the list
data = haven.load_data(uid[0])
# Save the data to a CSV file, with tabs ("\t") instead of commas.
data.to_pandas().to_csv(f"knife_scan_example_{uid[0].split('-')[0]}.csv", sep='\t')
# Do the fitting
transmission = data["It_raw_counts"] / data["I0_raw_counts"]
properties = haven.fit_step(x=data["Focus V "], y=transmission, plot=True, plot_
→˓derivative=True)
print(properties)

Properties(position=5961.212838126833, fwhm=1449.2198918394388)

1.1. Demonstration of Knife Scans 5
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1.1.3 Loading Data From The Other Branch

By default, haven.load_data() will retrieve data for the branch corresponding to the computer you are using (e.g.
microprobe branch from the microprobe computer and lerix branch for the lerix computer).

The can be changed by using passing the catalog_name argument to haven.load_data().

[3]: # This is the UID from a previous knife edge scan at the 25-ID-C microprobe branch.
# Since we explicitly select the s25idc catalog,
# this cell will work from either the lerix or microprobe computers.
uid_from_previous_scan = "927fa7dd-e331-45ca-bb9d-3f89d7c65b17"
# Load the data by explicitly specifying the catalog to look in
data = haven.load_data(uid_from_previous_scan, catalog_name="s25idc")
# Do the fitting and plotting as normal
haven.fit_step(x=data["knife"], y=data.It_raw_counts/data.I0_raw_counts, plot=True, plot_
→˓derivative=True)

[3]: Properties(position=5961.212838126833, fwhm=1449.2198918394388)

6 Chapter 1. Tutorials
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This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).

1.2 Tutorial: XAFS Scans and Energy Scans

This notebook shows the following tasks:

• Running a Single-Segment XANES scan

• Loading the Data

• Running a Multi-Segment XAFS Scan

• Running a Multi-Segment EXAFS Scan in K-space

• Modifying the List of Detectors

First we have to setup haven, the beamline control library. Haven contains most of the tools we will use. We can import
haven, setup the instrument, and create the run engine with the start_haven command. After the required steps are
completed, it will deliver us into an ipython terminal.

We will also set metadata about who is running the beamline. This value will be saved in every plan executing on this
run engine. This step is optional, but will allow database queries for scans taken by a specific person.

>>> RE.md["operator"] = "MFW" # <- Put your initials in here

1.2. Tutorial: XAFS Scans and Energy Scans 7

/home/docs/checkouts/readthedocs.org/user_builds/haven-spc/checkouts/latest/docs/tutorials/knife_scan.ipynb


haven, Release 0.1.0

1.2.1 Running a Single-Segment XANES scan

Running a scan in bluesky is a two step process.

First, create a plan. A plan generates messages with instructions to do things like move a motor, wait for a motor to
arrive at its destination, and trigger and read a detector. To create a plan, you call a function that will generate these
messages. Calling the function doesn’t actually execute the scan. In our case, haven.xafs_scan(8325, 0.5,
1, 8350) will create the plan, but the plan will not do anything unless used with a run engine.

The xafs_scan() plan requires at least four values: (start, step, exposure, stop). start and stop mark the boundaries
of the energy range, in eV. step is the space between energy points, in eV. Unless the range between start and stop is a
whole multiple of step, the stop energy will not appear in the scan. exposure is the time, in seconds, for which to count
at each energy.

The optional argument E0 specifies the energy, in eV, of an x-ray absorbance edge. If given, all other energy values
(i.e. start and stop) will be relative to E0.

>>> # These two plans will scan from 8323 eV to 8383 eV
>>> # in 2eV steps with 1 sec exposure
>>> absolute_plan = haven.xafs_scan(8323, 2, 1, 8383)
>>> relative_plan = haven.xafs_scan(-20, 2, 1, 50, E0=8333)

Before running either of these plans, we can verify that it will do what we expect with the simulators:
summarize_plan() helper. This function will print a human-readable description of all the steps that will be taken.

>>> summarize_plan(relative_plan)

Next, execute the plan on the run engine. As part of start_haven, we created a run engine. Now we will use this
run engine to execute the plan. The run engine will read the messages and perform the appropriate tasks. We will
also provide some meta-data, which will allow us to determine the purpose of these scans in the future. simulators:
summarize_plan() consumed the plan so we have to create a new one.

When the run engine finishes the plan, it will return a unique identifier (UID). This UID is the best way to retrieve the
data from the database. We will save the UID to a variable, and also print it to the page in case we want to recall it
later.

>>> plan = haven.xafs_scan(-20, 2, 1, 50, E0=8333)
>>> # Run one of the plans with the previously created RunEngine
>>> uid = RE(plan, sample_name="Ni foil", purpose="training")
>>> print(uid)

1.2.2 Loading the Data

During execution the data are saved to a mongoDB database. Haven has tools to retrieve the data.

The load_data() function will return a data set, provided we supply the uid that we had previously recorded. It is
possible to have multiple experimental runs within a single call to the run engine, and so our variable uid from above
is actually a list of UIDs. Since there was only one run, we will just use the first (and only) entry: uid[0].

If the analysis is being done at a different time or place from running the scan, then the variable uid will probably not
be set. In this case, it is possible to provide the UID that was printed above.

Optionally, the data can be saved to a text CSV file for additional analysis. First we will convert it to a pandas
DataFrame and then use panda’s to_csv() method. We will append the first segment of the UID to the filename to
descrease the likelihood that we will overwrite data.

8 Chapter 1. Tutorials
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>>> # Uncomment this line to manually specify a UID
>>> # uid = ["927fa7dd-e331-45ca-bb9d-3f89d7c65b17"]
>>> # Load the data for the first (and only) UID in the list
>>> data = haven.load_data(uid[0])
>>> # Save the data to a CSV file, with tabs ("\t") instead of commas.
>>> data.to_pandas().to_csv(f"xafs_scan_example_{uid[0].split('-')[0]}.csv", sep='\t')
>>> # Plot the result
>>> data["od"] = data["It_raw_counts"] / data["I0_raw_counts"]
>>> plt.plot(data['energy'], data['od'])

1.2.3 Running a Multi-Segment XAFS Scan

The xafs_scan() function can accept multiple sets of values to accomodate additional scan regions. After the first set
of four parameters (start, step, exposure, stop), additional sets of three parameters (step, exposure, stop) can be given
and will use the previous stop energy as its new start energy.

Additionally, Haven will look up the literature energy for a given X-ray absorption edge, in this case the Ni K-edge.

The call below will scan the following energies, relative to 8333 eV:

• -50 to -10 eV (8283 to 8323 eV) in 5 eV steps with 0.5 sec exposure

• -10 to +50 eV (8323 to 8383 eV) in 1 eV steps with 1 sec exposure

• +50 to +200 eV (8383 to 8533 eV) in 10 eV steps with 0.5 sec exposure

>>> multisegment_plan = haven.xafs_scan(-50, 5, 0.5, # start, step, exposure
-10, 1, 1, # start, step, exposure
50, 10, 0.5, # start, step, exposure
200, # stop
E0="Ni_K")

>>> # Run the plan with the previously created RunEngine
>>> uid = RE(multisegment_plan, sample_name="Ni foil", purpose="training")
>>> print(uid)

1.2.4 Running a Multi-Segment EXAFS Scan in K-space

The xafs_scan() function can also accept one energy segment as X-ray wavenumbers instead of X-ray energy using
the k_step, k_exposure and k_max keyword-only parameters. k_weight controls the increasing exposure time at higher
wavenumbers.

>>> exafs_plan = haven.xafs_scan(-200, 5, 1.0, # start, step, exposure
-20, .3, 1, # start, step, exposure
30, # Last non-k energy point (also start of k-region␣

→˓in eV)
k_step=0.05, k_exposure=1.0, k_max=13.5, k_weight=0.5,
E0=8331.0)

>>> # Run the plan with the previously created RunEngine
>>> uid = RE(exafs_plan, sample_name="Ni foil", purpose="training")
>>> print(uid)

1.2. Tutorial: XAFS Scans and Energy Scans 9
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1.2.5 Modifying the List of Detectors

By default, xafs_scan() measures all registered ion chambers, most likely those set up during haven.
load_instrument() called above. This default list can be overridden by using the detectors argument. This example
records only those scaler channels whose EPICS records’ .DESC values are “It”, “I0”, or “Iref”. Modify these names
to suit your use case.

>>> detectors_plan = haven.xafs_scan(8323, 2, 1, 8383, detectors=["It", "I0", "Iref"])
>>> # Run the plan with the previously created RunEngine
>>> uid = RE(detectors_plan, LivePlot('It_raw_counts', 'energy_energy')
>>> print(uid)

1.3 Tutorial: Area Detectors

This tutorial covers the basics of using an area detector. Specifically:

• Loading the Ophyd Device

• Verifying the Device Can Be Staged

• Running an XAFS Scan

1.3.1 Loading the Ophyd Device

Note: This tutorial assumes the area detector has already been configured in Haven for use at the beamline. For setup
instructions, see Area Detectors and Cameras.

First, open a terminal and run start_haven. After a brief wait, this will import some basic Haven and Bluesky objects
and then present you with an ipython terminal.

Next we will retrieve the device from Haven’s device registry. In this tutorial we will be using an Eiger S 500K area
detector. We need to know the device name. To find it, we will ask the haven registry for all available devices.

In [1]: haven.registry.device_names
Out[1]:
['sim_motor',
'eigerector',
'energy',
'monochromator',
's25id-gige-A',
'Shutter A',
'Aerotech',
'NHQ01_ch1',
'NHQ01_ch2',
'KB_slits',
'eiger',
'vortex_me4']

The second to last entry is the name of the device we want, so we will now retrieve it from the device registry:

In [2]: eiger = haven.registry.find("eiger")

10 Chapter 1. Tutorials
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1.3.2 Verifying the Device Can Be Staged

If this is the first time the detector has been used since the IOC was started, there may be additional steps required. To
test this, we will see if the device can be staged.

In [3]: eiger.stage()

If the above function returns without error, then the device can be unstaged and is ready for use. Before we do that,
lets just make sure we can trigger it.

In [4]: eiger.trigger().wait()

In [5]: eiger.unstage()

However, if staging causes and exception about an unprimed plugin, then we need to prime the plugin first. The
following steps should prime the plugin:

• open the caQtDM panels (e.g. start_25idSimDet_caqtdm)

• open the plugins panel (under Plugins click the All button

• Ensure the offending plugins are enabled

• In the original camera panel, click Start button next to “Acquire” to collect a frame

Now we can stage and trigger the detector.

In [4]: eiger.stage()

In [5]: eiger.trigger().wait()

In [6]: eiger.unstage()

1.3.3 Running an XAFS Scan

First, we will verify that the detector is going to measure the correct signals for this detector:

In [7]: list(eiger.read_attrs)

Next, we will prepare the plan. By default, the xafs_scan() plan will only measure the ion chambers. To also trigger
the area detector, we must include it both as a detector and as a time positioner (for setting exposure time).

In [7]: time_positioners = [eiger.cam.acquire_time, ion_chambers[0].exposure_time]

In [8]: detectors = [eiger, *ion_chambers]

Now we will create an XAFS scan plan with the following energies relative to the N-K edge (8333 eV):

• -200 eV to -30 eV

– 10 eV steps

– 1 second exposure

• -30 eV to +30 eV

– 1 eV steps

– 1 second exposure

1.3. Tutorial: Area Detectors 11
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• +30 eV to k=14

– 0.05 steps

– 1 second base exposure

– k_weight = 0.5

In [9]: plan = haven.xafs_scan(-200, 10, 1, -30, 1, 1, 30, k_step=0.05, k_max=14, k_
→˓exposure=1, k_weight=0.5, E0="Ni_K", time_positioners=time_positioners,␣
→˓detectors=detectors)

Next we will summarize the plan to ensure that it is performing the steps we expect:

In [10]: summarize_plan(plan)

Inspect the output to ensure that it is measuring the correct detectors (Read ['eiger', 'Iref', 'Ipreslit',
'It', 'IpreKB', 'I0dn', 'energy']) and setting the correct energies (energy -> 9069.77015484562)
and exposure times (Iref_exposure_time -> 2.2221354183382798 and eiger_cam_acquire_time -> 2.
2221354183382798).

Summarizing the plans consumes it, so we will build the plan again, and run it in the run engine along with some
meta-data describing the sample and the reason we’re measuring it:

In[12]: plan = haven.xafs_scan(-200, 10, 1, -30, 1, 1, 30, k_step=0.05, k_max=14, k_
→˓exposure=1, k_weight=0.5, E0="Ni_K", time_positioners=time_positioners,␣
→˓detectors=detectors)

In[13]: RE(plan, sample_name="Ni test sample", purpose="training")

This file is also available as an interactive jupyter notebook.

Download this file as a notebook (hint: right-click -> “save as”).

1.4 Demonstration of Fly-Scanning

This notebook covers how to perform a fly-scan, where one motor moves continuously while one or more detectors
acquire multiple data points.

This includes the following tasks: - preparing an axis on the Aerotech XY stage as a flyer - executing a 1D fly-scan over
an Aerotech axis - loading 1D fly-scan data from the database - executing a 2D scan where one axis is flown - loading
2D fly-scan data from the database

First we have to import haven, the beamline control library. Haven contains most of the tools we will use. Importing it
allows us to get to the functions and classes that are defined inside.

Next, the haven.load_instrument() function will read the configuration files and scan the hardware for its config-
uration. It will then build the devices that will be used for scans. This function prints out a list of motors that it has
discovered.

Then, we create the run engine. The run engine is responsible for executing our scans and will be described in more
detail when it is used below.

Lastly we set metadata about who is running the beamline. This value will be saved in every plan executing on this run
engine. This step is optional, but will allow database queries for scans taken by a specific person.

12 Chapter 1. Tutorials
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[21]: # Import support packages
import matplotlib.pyplot as plt
import numpy as np
# Import haven
import haven
# Load the motors and detectors
haven.load_instrument()
# The RunEngine will be responsible for executing the plans
RE = haven.run_engine()
# (Optional) Save the initials of the current beamline operator as metadata
RE.md["operator"] = "MFW" # <- Put your initials in here

Could not connect to AravisDetector in 2.27 sec: Hutch A BPM.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-A.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-C.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-D.
Could not connect to AravisDetector in 2.27 sec: s25id-gige-E.
Could not connect to ApsPssShutterWithStatus in 2.27 sec: front_end_shutter.
Could not connect to ApsPssShutterWithStatus in 2.27 sec: hutch_shutter.
Could not connect to ApsMachine in 2.27 sec: APS.
Could not connect to Monochromator in 2.21 sec: monochromator.
Could not connect to ApsUndulator in 2.21 sec: undulator.
Could not connect to energy positioner: energy
Could not connect to fluorescence detector: canberra_Ge7 (20xmap8:)
Could not connect to motor: 25ida:ORM1:m1
Could not connect to motor: 25ida:ORM1:m2
Could not connect to motor: 25ida:ORM1:m3
Could not connect to motor: 25ida:ORM1:m4
Could not connect to motor: 25ida:ORM2:m1
Could not connect to motor: 25ida:ORM2:m2
Could not connect to motor: 25ida:ORM2:m3
Could not connect to motor: 25ida:ORM2:m4
Could not connect to motor: 25ida:ORM2:m5
Could not connect to motor: 25ida:slits:m1
Could not connect to motor: 25ida:slits:m2
Could not connect to motor: 25ida:slits:m3
Could not connect to motor: 25ida:slits:m4
Could not connect to motor: 25ida:slits:m5
Could not connect to motor: 25ida:slits:m6
Could not connect to motor: 25ida:slits:m7
Could not connect to motor: 25ida:slits:m8
Could not connect to motor: 25ida:BPM:m1
APS device not found, suspenders not installed.

1.4. Demonstration of Fly-Scanning 13
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1.4.1 Preparing the Aerotech Flyer

We need to get the horizontal axis of the aerotech XY stage as an Ophyd device, and the ion chambers to use as detectors.

This can be done easily with the Haven registry.

We will also use a 0.2 sec dwell time for the rest of this tutorial, which we set on the device now.

[2]: aerotech = haven.registry.find("aerotech")
# Set dwell time here
dwell_time = 0.2 # seconds
aerotech.horiz.dwell_time.set(dwell_time).wait()
# Get ion chamber devices
ion_chambers = haven.registry.findall("ion_chambers")

1.4.2 1D Fly-Scan

Now we will create the plan to run the fly scan.

We need to provide the start and end positions for the scan. For easy comparison to regular step scans, the start and
stop positions are the motor position at the center of the first and last bins of the scan.

We also need to inform the plan how often to make a new data bin. num tells the plan how many bins to create. The
example code will produce 41 bins between 1000µm and 1000µm, which means each bin will cover 50µm.

[3]: start, stop, num = (-1000, 1000, 41)
plan = haven.fly_scan(ion_chambers, aerotech.horiz, start, stop, num)
uid, = RE(plan, purpose="fly scanning tutorial", sample="")
print(f"Scan complete. UID: {uid}")

/home/beams0/S25IDCUSER/micromamba/envs/haven-dev/lib/python3.9/site-packages/event_
→˓model/__init__.py:208: UserWarning: The document type 'bulk_events' has been␣
→˓deprecated in favor of 'event_page', whose structure is a transpose of 'bulk_events'.
warnings.warn(

Scan complete. UID: 0ebb79bd-eea1-4ff2-8a2e-5c4915cd13fc

Viewing 1D Fly-Scan Results

[41]: # Load the data from the mongodb database
client = haven.tiled_client()
uid = "0ebb79bd-eea1-4ff2-8a2e-5c4915cd13fc"
data = client[uid]['primary']['data'].read()

# Create a new set of axes for plotting
plt.figure()
ax = plt.gca()
# Plot It versus motor position (w/o offset for now)
ax.plot(data.aerotech_horiz, data.Ipre_KB_net_counts, marker='o', linestyle="--")
ax.set_xlabel("Aerotech horiz /µm")
ax.set_ylabel("It net counts")

[41]: Text(0, 0.5, 'It net counts')
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1.4.3 2D Map Fly-Scanning

In this section we will fly the horizontal axis and step the vertical axis.

Instead of fly_scan() we will use grid_fly_scan().

[7]: # Set parameters for fly scan here
step_params = (-1500, 500, 21) # (start, stop, num)
fly_params = (-1000, 1000, 41) # (start, stop, num)
# Create the plan, slow axis listed first
plan = haven.grid_fly_scan(ion_chambers, aerotech.vert, *step_params, aerotech.horiz,␣
→˓*fly_params, snake_axes=True)
# Execute the plan
uid, = RE(plan, purpose="fly scanning tutorial", sample="")
print(f"Scan complete. UID: {uid}")

/home/beams0/S25IDCUSER/micromamba/envs/haven-dev/lib/python3.9/site-packages/event_
→˓model/__init__.py:208: UserWarning: The document type 'bulk_events' has been␣
→˓deprecated in favor of 'event_page', whose structure is a transpose of 'bulk_events'.
warnings.warn(

Scan complete. UID: 5e00f671-7b4b-4215-8ed9-224566a6fa35

1.4. Demonstration of Fly-Scanning 15
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Viewing 2D Fly-Scan Results

[39]: # Load the data from the mongodb database
client = haven.tiled_client()
uid = "5e00f671-7b4b-4215-8ed9-224566a6fa35"
# Get the shape of the map from the metadata
metadata = client[uid].metadata
extent = (*metadata['start']['extents'][1], *metadata['start']['extents'][0])
shape = metadata['start']['shape']
# Read and re-shape the data
data = client[uid]['primary']['data'].read()

[40]: # Create a new set of axes for plotting
plt.figure()
ax = plt.gca()
# Plot a map of It measurements (w/o offset for now)
I0 = np.reshape(np.asarray(data.Ipre_KB_net_counts), shape)
im = ax.imshow(I0, extent=extent, origin="lower")
plt.colorbar(im, ax=ax)
ax.set_xlabel("Aerotech horiz /µm")
ax.set_ylabel("Aerotech vert /µm")

[40]: Text(0, 0.5, 'Aerotech vert /µm')

This file is also available as an interactive jupyter notebook.
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Download this file as a notebook (hint: right-click -> “save as”).

1.4. Demonstration of Fly-Scanning 17
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CHAPTER

TWO

HOW-TO GUIDES

These guides cover a particular topic in depth, coving material useful to users and beamline staff.

These guides do not cover the individual beamlines thoroughly.

2.1 Area Detectors and Cameras

Area detectors are all largely the same but with small variations from device-to-device. All the device definitions for
area detectors are in the haven.instrument.area_detector module.

Currently supported detectors:

• Eiger 500K (Eiger500K)

• Lambda (Lambda250K)

• Simulated detector (SimDetector)

EPICS and Ophyd do not make a distinction between area detectors and cameras. After all, a camera is just an area
detector for visible light.

In Haven, the device classes are largely the same. The only substantive difference is that cameras have the ophyd label
“cameras”, whereas non-camera area detectors (e.g. Eiger 500K), have the ophyd label “area_detectors”. They can be
used interchangeably in plans.

Warning: Currently, cameras are not properly implemented in Haven. This will be fixed soon.

2.1.1 Using Devices in Haven

If the device you are using already has a device class created for it, then using the device only requires a suitable
entry in the iconfig file (~/bluesky/instrument/iconfig.toml). The iconfig section name should begin with
“area_detector”, and end with the device name (e.g. “area_detector.eiger”). The device name will be used to retrieve
the device later from the instrument registry.

The key “prefix” should list the IOC prefix, minus the trailing “:”. The key “device_class” should point to a subclass
of ophyd’s DetectorBase class that is defined in haven.instrument.area_detector.

[area_detector.eiger]

prefix = "dp_eiger_xrd91"
device_class = "Eiger500K"
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Once this section has been added to iconfig.toml, then the device can be loaded from the instrument registry. No
special configuration is generally necessary.

>>> import haven
>>> haven.load_instrument()
>>> det = haven.registry.find("eiger")
>>> plan = haven.xafs_scan(..., detectors=[det])

Usually, no special configuration is needed for area detectors. By default it will save HDF5 and TIFF files for each
frame. The filenames for these TIFF and HDF5 files will be stored automatically to the database. The outputs of the
stats plugins will also be saved.

Warning: It is up you to make sure the file path settings are correct for the HDF5 and TIFF NDplugins. Also,
ensure that the routing is correct for the ROI and STATS NDplugins.

Warning: The first time you stage the device after the IOC has been restarted, you may receive an error about the
plugin not being primed. The means that the plugin does not know the size of the image to expect since it has
not seen one yet. The solution is to open the caQtDM panels for the detector, ensure the corresponding plugins are
enabled, and then manually acquire a frame.

2.2 Making Changes to Haven and Contributing

Two Scenarios are likely when proposing changes to Haven:

• New feature or bugfix written in a development environment (preferred)

• Troubleshooting the beamline during beamtime

2.2.1 From a Development Environment

The preferred way to modify Haven is to fork the main repository on github, make changes on a new branch, and then
submit a pull request back to the main repository. This section assumes you have an active github account (if not,
sign up for one first).

The following steps are only required the first time you work on Haven. Once done, the forked repository and local
environment can be reused.

1. Install a git client on your local computer (e.g. git or Github Desktop)

2. Create a fork of the main Haven repository

3. Clone the forked repository to your local computer (e.g. git clone git@github.com:canismarko/haven.
git)

4. Install an anaconda-like distribution environment (mamba-forge is recommended)

5. Create a new conda environment from environment.yml (e.g. mamba env create -n haven -f haven/
environment.yml)

6. Activate the newly created conda environment (e.g. mamba activate haven)

7. Install haven in the environment (pip install -e "haven[dev]")

8. Verify that the test-suite passes
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The following steps should then be performed every time a new feature is being added or bug is being fixed.

9. Sync your github fork with the main github repository

10. Pull changes to your local repository (git pull)

11. Create a new git branch for the task you are doing (e.g. git checkout -b area_detector_support)

12. Make changes to the Haven source code as needed

13. Ensure all tests pass (pytest)

14. Commit changes to your local branch (git add file1.py file2.py ... and git commit)

15. Push changes back to github (git push)

16. Create a pull request on github to send changes back to the main repository.

Running Tests

Pytest is the recommended runner for Haven. Once the environment is properly setup, the tests can be run using:

$ pytest

pytest should not report any errors or failures, though skipped, xfailed, and warnings are expected.

While running the tests, devices created using make_device() will be replaced with simulated devices using Ophyd’s
sim module. This means that load_instrument() can be called without hardware being present, and the correspond-
ing fake devices can be found in the haven.registry.

Additionally, some pytest fixtures are provided that create simulated devices, (e.g. ion chambers) and can be used
directly in your tests.

More details can be found in the file haven/tests/conftest.py.

2.2.2 From the Beamline

Warning: This section is intended for qualified beamline staff. Users are not authorized to make changes to the
beamline software without staff involvement.

If at all possible, changes should be made through a development environment as described above.

User support often requires changes to be made quickly from the beamline computers.

Git is our version control software. It interacts with github, and allows changes to the source code to be tracked and
managed.

Before modifying Haven, create a new branch using git. This will allow changes to be undone or pushed to github for
use at other beamlines. First we will create the new branch, then we will check it out to begin working on it.

$ cd ~/haven
$ git branch broken_shutter_workaround
$ git checkout broken_shutter_workaround

Now modify the Haven scripts as needed to get the beamline running. Once the changes are complete, commit them to
version control. If new files have been added, then we have to inform git that they should be included, for examples:
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$ git add haven/shutter_workaround.py

Then commit the changes:

$ git commit -a -m "Workaround for the shutter not also closing when requested."

If you see black...Failed, then you need to run the command again. Black is an add-on that enforces its own code
format so that we can focus on the important stuff, and it runs every time changes are committed. If code needs to
be reformatted, it stops the commit and fixes the formatting. Attempting the commit again with the reformatted code
usually works.

The -a option tells git to automatically include all files that have been changed. The -m option lets us include a short
message describing the commit. Please write descriptive commit messages. For longer messages, omit the -m option
(just git commit -a) and a text editor will appear.

Now the new branch can be pushed to github with

$ git push -u origin delete_me

The -u option is only needed the first time: it tells git to connect the new branch to github (origin).

2.2.3 Design Defense

An important consideration is how to manage changes to the code-base in a way that satisfies several goals:

1. maximize reuse of code between beamlines (9-BM, 20-BM, and 25-ID)

2. support rapid troubleshooting at the beamline

3. control deployment of new features among the beamlines

4. encourage documentation and testing

Rapid troubleshooting necessarily leads to the code-base being in an untested state, and so these changes should not
automatically apply to the code-base in use at another beamline.

The idea presented here is to have each beamline own a local copy of the haven repository. Changes made at the
beamline should ideally be made to a separate branch. If the change is worth keeping it can be committed along with
documentation and tests, and the new branch can be merged into the main branch.

Getting those changes to the other beamlines can be done whenever no experiments are taking place there. We can pull
the changes from github, and run the system tests.

Using a common network folder for the scripts would satisfy requirements 1 and 2, but not 3 and 4. Having entirely
separate sets of scripts would satisfy requirement 2, but not 1, 3, or 4. The approach described here aims to strike a
balance between the 4 requirements.

2.3 Configuration Files

Table of Contents

• Configuration Files

– Motivation

– Checking Configuration
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– Configuration File Priority

∗ HAVEN_CONFIG_FILES Environment

∗ ~/bluesky/iconfig.toml

∗ iconfig_default.toml

– Development and Testing

– Example Configuration

2.3.1 Motivation

Haven’s goal is to provide support for all of the spectroscopy beamlines. However, each beamline is different, and
these differences are managed by a set of configuration files, similar to the .ini files used in the old LabView solution.
To keep the complexity of these configuration files manageable, Haven gets much of the needed information from the
IOCs directly.

Haven/Firefly should always load without a specific configuration file, but will probably not do anything useful.

2.3.2 Checking Configuration

If Haven is installed with pip, the command haven_config can be used to read configuration variables as they will be
seen by Haven:

$ haven_config beamline
{'is_connected': False, 'name': 'SPC Beamline (sector unknown)'}
$ haven_config beamline.is_connected
False

2.3.3 Configuration File Priority

There are several sources of configuration files, described in detail below. They are loaded in the following order, with
lower numbers taking precedence over higher numbers.

1. Files listed in the $HAVEN_CONFIG_FILES

2. ~/bluesky/instrument/iconfig.toml (for backwards compatibility)

3. ~/bluesky/iconfig.toml (best place)

4. iconfig_default.toml packaged with Haven

Unless there’s a good reason to do otherwise, most beamline configuration belongs in ~/bluesky/iconfig.toml.

For example, to enable support for our Universal Robotics robot Austin to 25-ID-C, open the file ~/bluesky/iconfig.
toml and add the following:

[robot.Austin]
prefix = "25idAustin"

Note: The prevent accidental changes, the bluesky configuration files may not be writable by the user accounts at the
beamline. For example, at 25-ID, the user account does not have permission to write to ~/bluesky/iconfig.toml
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so changes must be made as the staff account.

HAVEN_CONFIG_FILES Environment

If the environmental variable HAVEN_CONFIG_FILES is set to a comma-separated list of file path, then these files will
take priority, with later entries superseding earlier entries.

~/bluesky/iconfig.toml

The file ~/bluesky/iconfig.toml will be read if it is present. This is the best place to put beamline-specific
configuration.

The file ~/bluesky/instrument/iconfig.toml is also read for backwards compatibility. It should not be used for
new deployments, and support for it may be removed without warning.

iconfig_default.toml

Haven includes an set of default configuration values in src/haven/iconfig_default.toml. This is mainly so that
Haven and Firefly can still run during development without a dedicated configuration file. It also serves as a starting
point for deploying Haven to a new beamline. See the section on testing below for suggestions on how to add default
configuration.

2.3.4 Development and Testing

While adding features and tests to Haven, it is often necessary to read a configuration file, for example when testing
functions that load devices through load_instrument(). However, the configuration that is loaded should not come
from a real beamline configuration or else there is a risk of controlling real hardware while running tests.

To avoid this problem, pytest modifies the configuration file loading when running tests with pytest:

1. Ignore any config files besides iconfig_default.toml.

2. Add iconfig_testing.toml to the configuration

Additionally, all load_motors() style functions should accept an optional config argument, that will determine the
configuration instead of using the above-mentioned priority.

If a feature is added to Haven that would benefit from beamline-specific configuration, it can be added in one of two
places.

src/haven/iconfig_default.toml
This is the best choice if the device or feature is critical to the operation of Haven and/or Firefly, such as the
beamline scheduling system. The values listed should still not point at real hardware, but should be sensible
defaults or dummy values to allow Haven to function.

src/haven/iconfig_testing.toml
This is the best choice if the device or hardware is optional, and may or may not be present at any given beamline,
for example, fluorescence detectors. This configuration should not point to real hardware.
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2.3.5 Example Configuration

Below are some examples of configuration that can be re-used for new devices support or beamline setup.

Listing 1: iconfig_default.toml

# Defaults go here, then get updated by toml loader
[beamline]

name = "SPC Beamline (sector unknown)"
is_connected = false

[facility]

name = "Advanced Photon Source"
xray_source = "insertion device"

[database.databroker]

catalog = "bluesky"

# Cameras
# =======

[camera]

imagej_command = "imagej"

Listing 2: iconfig_testing.toml

[bss]

prefix = "255idc:bss"
beamline = "255-ID-C"

[xray_source]

type = "undulator"
prefix = "ID255:"

[queueserver]
kafka_topic = "s255idc_queueserver"
control_host = "localhost"
control_port = "60615"
info_host = "localhost"
info_port = "60625"

[database.tiled]

uri = "http://localhost:8337/"
entry_node = "255id_testing"

[shutter]
(continues on next page)
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(continued from previous page)

prefix = "PSS:99ID"

[shutter.front_end_shutter]

hutch = "A"
# open_pv = "PSS:99ID:FES_OPEN_EPICS.VAL"
# close_pv = "PSS:99ID:FES_CLOSE_EPICS.VAL"
# status_pv = "PSS:99ID:A_BEAM_PRESENT"

[shutter.hutch_shutter]

hutch = "C"
# open_pv = "PSS:99ID:SCS_OPEN_EPICS.VAL"
# close_pv = "PSS:99ID:SCS_CLOSE_EPICS.VAL"
# status_pv = "PSS:25ID:C_BEAM_PRESENT"

[undulator]

ioc = "id_ioc"

[monochromator]

ioc = "mono_ioc"
ioc_branch = "UP" # For caQtDM macros

[ion_chamber]

[ion_chamber.scaler]
prefix = "scaler_ioc"
channels = [2]

[ion_chamber.preamp]
prefix = "preamp_ioc"

[ion_chamber.voltmeter]
prefix = "255idc:LabjackT7_" # Don't include the labjack number

# Motors
# ======
#
# Add a new section for each IOC (or IOC prefix) that has motors
# matching the format {prefix}:m1. The heading of the subsection
# ("VME_crate" in the example below) is a human-readable name that
# will become a label on the Ophyd Device. *num_motors* determines how
# many motors will be read. The example below will load three motors
# with PVs: "vme_crate_ioc:m1", "vme_crate_ioc:m2", and
# "vme_crate_ioc:m3".

[motor.VME_crate]
prefix = "255idVME"
num_motors = 3

(continues on next page)
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(continued from previous page)

# Keys for camera definitions must begin with "cam" (e.g. "camA", "camB")
[camera.camA]

name = "s25id-gige-A"
description = "GigE Vision A"
prefix = "255idgigeA"

[aerotech_stage.aerotech]

prefix = "255idc"
delay_prefix = "255idc:DG645"
pv_vert = ":m1"
pv_horiz = ":m2"

[power_supply.NHQ01]

prefix = "ps_ioc:NHQ01"
n_channels = 2

[slits.KB_slits]

prefix = "vme_crate_ioc:KB"
device_class = "BladeSlits"

[slits.whitebeam_slits]
# A single rotating aperture slit, like the 25-ID white/pinkbeam slits
prefix = "255ida:slits:US:"
device_class = "ApertureSlits"
pitch_motor = "m33"
yaw_motor = "m34"
horizontal_motor = "m35"
diagonal_motor = "m36"

# A bendable mirror, like the long KB at 25-ID-C
[kb_mirrors.LongKB_Cdn]
prefix = "255idcVME:LongKB_Cdn:"
horiz_upstream_motor = "m33"
horiz_downstream_motor = "m34"
horiz_upstream_bender = "m21"
horiz_downstream_bender = "m22"
vert_upstream_motor = "m46"
vert_downstream_motor = "m47"
vert_upstream_bender = "m56"
vert_downstream_bender = "m57"

# A non-bendable mirror, like the KB at 25-ID-C
[kb_mirrors.KB]
prefix = "255idcVME:KB:"
horiz_upstream_motor = "m35"
horiz_downstream_motor = "m36"
vert_upstream_motor = "m48"

(continues on next page)
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(continued from previous page)

vert_downstream_motor = "m49"

# A single bounch, high heat load mirror
[mirrors.ORM1]
prefix = "25ida:ORM1:"
device_class = "HighHeatLoadMirror"
bendable = false

[mirrors.ORM2]

prefix = "25ida:ORM2:"
device_class = "HighHeatLoadMirror"
bendable = true

# An optical table with two vertical motors
[table.downstream_table]
prefix = "255idcVME:"
transforms = "table_ds_trans:"
pseudo_motors = "table_ds:"
upstream_motor = "m21"
downstream_motor = "m22"

# An optical table with one vertical motor and one horizontal motor
[table.upstream_table]
prefix = "255idcVME:"
vertical_motor = "m26"
horizontal_motor = "m25"

[area_detector.sim_det]

prefix = "255idSimDet"
device_class = "SimDetector"

[lerix.lerix.rowland]

x_motor_pv = "255idVME:m1"
y_motor_pv = "255idVME:m2"
z_motor_pv = "255idVME:m3"
z1_motor_pv = "255idVME:m4"

[heater.capillary_heater]

prefix = "255idptc10"
device_class = "CapillaryHeater"

[robot.A]
prefix = "255idAustin"

# Managed IOC control PVs
[iocs]
255idb = "glados:ioc255idb"
255idc = "glados:ioc255idc"

(continues on next page)
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(continued from previous page)

[fluorescence_detector]

[dxp.vortex_me4]

prefix = "vortex_me4"
num_elements = 4

[dxp.canberra_Ge7]

prefix = "20xmap8"
num_elements = 4

[xspress.vortex_me4_xsp]

prefix = "vortex_me4_xsp"
num_elements = 4

2.4 Defining a New Motor

2.5 Energy Scans (XAFS)

2.5.1 xafs_scan() for Straight-Forward XAFS Scans

The xafs_scan() is a bluesky plan meant for scanning energy over a a number of energy ranges, for example the
pre-edge, edge, and EXAFS signal of a K-edge.

The function accepts an arbitrary number of parameters for defining the ranges. The parameters are expected to provide
energy step sizes (in eV) and exposure times (in sec) between the boundaries of the ranges. They should be passed
following the pattern:

energy, step, exposure, energy, step, exposure, energy, ...

An example across the Nickel K-edge at 8333 eV could be:

RE(xafs_scan(8313, 2, 1, 8325, 0.5, 2, 8365, 10, 1.5, 8533))

RE is the bluesky RunEngine, which should already be imported for you in the ipython environment.

Absolute vs. Relative Scans

In many cases, it is more intuitive to describe the energy ranges relative to some absorption edge (E0). If this E0
energy is given directly to xafs_scan() via the E0 argument, then all energy points will be interpreted as relative to
this energy. The same scan from above would be:

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, 10, 1.5, 200, E0=8333))
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2.5.2 Defining Scans in K-Space

For extended structure scans (EXAFS), it may be more helpful to define the EXAFS region in terms of the excited elec-
tron’s wavenumber (k-space). This can be done with the keyword arguments k_step, k_exposure, and k_max. Providing
E0 is necessary, since otherwise wavenumbers will be calculated relative to 0 eV, and will not produce sensible results.

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, k_step=0.02, k_max=12, k_exposure=1., E0=8333))

Better quality results can sometimes be achieved by setting longer exposure times at higher k. The k_weight param-
eter will scale the exposure time geometrically with k. k_weight=0 will produce constant exposure times, and if
k_weight=1 then exposure will scale linearly with k.

RE(xafs_scan(-20, 2, 1, -8, 0.5, 2, 32, k_step=0.02, k_max=12, k_exposure=1., k_weight=1,
→˓ E0=8333))

2.5.3 energy_scan() for More Sophisticated Scans

For extra flexibility, use the energy_scan() plan, which accepts a sequence of energies to scan. For example, to scan
from 8325 to 8375 eV in 1 eV steps:

energies = range(8325, 8376, step=1)
RE(energy_scan(energies))

Notice the range ends at 8376 eV instead of 8375 eV, since the last value is not included when using a range.

The exposure time can also be given. exposure can either be a single number to be used for all energies, or a sequence
of numbers with the same length as energies, and each energy will use the corresponding exposure:

import numpy as np
energies = range(8325, 8376, step=1)
exposures = np.linspace(0.5, 5, num=len(energies))
RE(energy_scan(energies), exposure=exposures)

Building a more complicated set of energies can be made simpler using the ERange helper class:

energies = ERange(8325, 8375, E_step=1).energies()
RE(energy_scan(energies))

To make things even easier, energy_scan() can accept energy range objects directly:

energies = [
8300, 8320, # Individual energies are okay too, you can mix and match
ERange(8325, 8375, E_step=0.5),
ERange(8375, 8533, E_step=5),

]
RE(energy_scan(energies))

Other than including the ending energy in the list, this usage does not provide considerable value. However, the inclusion
of multiple energies with different exposure times makes the value more clear, since energy_scan will automatically
replace an ERange instance with the result of the instance’s energies() method, and add equivalent entries into
exposure based on the instance’s exposures() method.
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energies = [
ERange(8325, 8375, E_step=0.5, exposure=1.5),
ERange(8375, 8533, E_step=5, exposure=0.5),

]
RE(energy_scan(energies))

There is also a similar KRange that works similarly except using electron wavenumbers (k) instead of X-ray energy.
This allows the energies to be given in a more intuitive way for EXAFS:

energies = [
ERange(-50, 50, E_step=0.5, exposure=1.5),
ERange(50, 200, E_step=5, exposure=0.5),
KRange(200, 14, k_step=0.05, , k_weight=1., exposure=1.),

]
RE(energy_scan(energies, E0=8333))

Notice that the energies are now given relative to the edge energy E0 (the nickel K-edge in this case). This is almost
always necessary when using a KRange instance, since otherwise the corresponding energies would be relative to a
free, zero-energy electron, instead of core electrons. E0 can also be given as a string, in this case E0="Ni_K".

At this point, we have largely replicated the behavior of xafs_scan() described above. In fact, xafs_scan() is
a wrapper around energy_scan() whose main purpose is to take the parameters in the form of (energy, step,
exposure, energy, ...), and convert them to ERange and KRange instances.

2.5.4 Changing Detectors or Positioners

For more sophisticated scans, it may be necessary to include additional detectors. By default, xafs_scan()
and energy_scan() will measure the ion chambers as detectors (those returned by haven.registry.findall(
"ion_chambers")). Both plans accept the detectors argument, which can be any of the following:

1. A list of devices.

2. A list of names/labels of devices.

3. A single name/label for devices.

Options 1 and 2 can be intermingled. For example:

eiger = haven.registry.find("eiger")
detectors = [eiger, "ion_chambers"]
plan = haven.xafs_scan(..., detectors=detectors)

Supplying the detectors argument will ensure that the detectors are captured in the data streams, but it may still be
necessary to specify positioners for setting the exposure time. By default, only the ion chambers will receive have
their exposure time set. This is especially important when using the k_weight parameter to xafs_scan() or the
exposure parameter to energy_scan().

Both plans accept a time_positioners argument for this purpose, which should be a list of entries similar to those
accepted for detectors described above but with positioners for the various detectors. Extending the above example:

eiger = haven.registry.find("eiger")
detectors = [eiger, "ion_chambers"]
time_positioners = [eiger.cam.acquire_time, "ion_chambers.exposure_time"]
plan = haven.xafs_scan(..., detectors=detectors, time_positioners=time_positioners)
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The above example actually uses all of the ion chambers’ exposure times as separate positioners. This will work but
produces extra messages and may be confusing. Since counting is handled by the scaler, any of the ion chambers on
the same scaler can be used as a time positioner:

ion_chambers = haven.registry.findall("ion_chambers")
time_positioners = [eiger.cam.acquire_time, ion_chambers[0].exposure_time]
plan = haven.xafs_scan(..., time_positioners=time_positioners)

Lastly, we may want to specify a different energy position for example when using a secondary monocrhomator. By
default the “energy” positioner is used, which is a pseudo-positioner that controls both the monochromator and the
insertion device (if present). This positioner temporariy disables the EPICS-based pseudo-motor in use at sector
25-ID since the done status is not properly reported for the insertion device when using the EPICS implementation.

The energy_positioners argument accepts similar types as the previous options just discussed, and each one will be set
to the energy in electron-volts at each point. For example, to scan only the monochromator energy we could do:

mono_energy = haven.registry.find("monochromator.energy")
plan = haven.energy_scan(..., energy_positioners=[mono_energy])

or equivalently:

plan = haven.energy_scan(..., energy_positioners="monochromator.energy")

2.6 Fluorescence Detectors

Table of Contents

• Fluorescence Detectors

– Specifying Detectors in Configuration

– Common Behavior

∗ Creating Devices

∗ Managing Elements and ROIs

– Xspress 3

– XIA DXP (XMAP)

2.6.1 Specifying Detectors in Configuration

To add new detectors to the beamline, new sections should be added the iconfig.toml file. Each section should be
labeled [<class>.<name>], where <class> specifies which interface is present ("dxp" for XIA DXP or "xspress"
for Xspress3), and <name> becomes the device name. prefix is the PV prefix for the EPICS IOC, and num_elements
specifies the number of detector elements.

[dxp.vortex_me4]

prefix = "20xmap4b"
num_elements = 4

(continues on next page)
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(continued from previous page)

[xspress.vortex_ex]

prefix = "dp_xsp3_2"
num_elements = 1

The device can then be retrieved from the instrument registry for use in bluesky plans:

import haven

# Get individual fluorescence detectors
my_detector = haven.registry.find(name="vortex_me4")
another_detector = haven.registry.find(name="vortex_ex")

# Get all fluorescence detectors of any kind (e.g. DXP, Xspress3, etc.)
detectors = haven.registry.findall(label="fluorescence_detectors")

2.6.2 Common Behavior

Fluorescence detectors are implemented as Xspress3Detector and DxpDetector Ophyd device classes. They are
written to have a common Ophyd interface so that clients (e.g. Firefly) can use fluorescence detectors interchangeably.

Creating Devices

By default, devices created from these device classes include one MCA element, available on the mcas attribute. The
recommended way to create a fluorescence detector device directly is with the load_xspress() and load_dxp()
factory functions:

from haven import load_xspress

det = load_xspress(name="vortex_me4",
prefix="20xmap4b",
num_elements=4)

det.wait_for_connection()

Alternately, to make a dedicated subclass with a specific number of elements, override the mcas attributes:

from haven.instrument import xspress

class Xspress4Element(xspress.Xspress3Detector):
mcas = xspress.DDC(

xspress.add_mcas(range_=range(4)),
kind=(Kind.normal | Kind.config),
default_read_attrs=["mca0", "mca1", "mca2", "mca3"],
default_configuration_attrs=["mca0", "mca1", "mca2", "mca3"],

)
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Managing Elements and ROIs

Note: Not all fluorescence detector IOCs agree on how to number MCAs and ROIs. To maintain a unified interface,
Haven uses the convention to start counting from 0 regardless of the IOC. As such, the haven device signals may be
misaligned with the PVs they map to.

For example on a DXP-based IOC, an ophyd signal det.mcas.mca1.rois.roi1 will have a PV like xmap_4b:MCA1.
R0.

By default all elements (MCAs) will collect spectra, and all ROIs will save aggregated values. While this setup
ensures that no data are lost, it also creates a large number of signals in the database and may make analysis tedious.
Most likely, only some ROIs are meaningful, so those signals can be identified by giving them the hinted kind.

https://blueskyproject.io/ophyd/user/reference/signals.html#kind

During the staging phase (in its stage() method), each ROI will check this signal and if it is true, then it will change
its kind to hinted. When unstaging, the signal is reset to its original value.

Individual ROIs can be marked for hinting by setting the use signal:

from haven import load_xspress

# Create a Xspress3-based fluorescence detector
det = load_xspress(name="vortex_me4",

prefix="20xmap4b",
num_elements=4)

# Mark the 3rd element, 2nd ROI (0-indexed)
det.mcas.mca2.rois.roi1.use.set(1)

Behind the scenes, to track the state of use we add a “~” to the start of the value in the label() signal if use() is
false.

Marking multiple ROIs on multiple elements is possible using the following methods on the XRFMixin object:

• enable_rois()

• disable_rois()

These methods accepts an optional sequence of integers for the indices of the elements or ROIs to enable/disable. If
not ROIs or elements are specified, the methods will operate on all ROIs or elements (e.g. det.disables_rois()
will disable all ROIs on all elements.

from haven import load_xspress

# Create a Xspress3-based fluorescence detector
det = load_xspress(name="vortex_me4",

prefix="20xmap4b",
num_elements=4)

# Mark all ROIs on the third and fifth elements
det.enable_rois(elements=[2, 4])

# Unmark the first, eight, and fifteeth elements
det.enable_rois(rois=[0, 7, 14])

(continues on next page)
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# Unmark the third ROI on the second element
det.enable_rois(rois=[2], elements=[1])

2.6.3 Xspress 3

Support for Quantum Detectors’ Xspress3 Family of detectors is provided by the Xspress3Detector base class. The
EPICS support for Xspress3 detectors is based on the EPICS area detector module, and so the Xspress3Detector is
a customized ophyd.DetectorBase.

2.6.4 XIA DXP (XMAP)

DXP (XMAP, Mercury, Saturn) electronics use the bluesky multi-channel analyzer (MCA) device, packaged in Haven
as the DxpDetector class.

The DXP electronics are not yet compatible with fly-scanning. The DxpDetector does implement the kickoff()
and complete() methods, but does not yet handle data collection. This is because the data are reported as a byte
stream that must first be decoded. The DXP manual describes the structure of this byte-stream, so in principle it is
possible to parse this in the collect() method.

2.7 Fly Scanning

Table of Contents

• Fly Scanning

– Plans for Fly-Scanning

∗ fly_scan()

∗ grid_fly_scan()

– Aerotech-Stage

∗ Position-Synchronized Output (PSO)

∗ Calculated Components Before Scan

∗ Physical Fly scan process

– Notes

Fly scanning is when detectors take measuments from a sample while in motion. Creating a range of measurements
based on user specified points. This method is generally faster than traditional step scanning.

Flyscanning with Bluesky follows a general three method process

• Kickoff: Initializes flyable Ophyd devices to set themselves up and start scanning

• Complete: Continously checks whether flight is occuring until it is finished

• Collect: Retrieves data from fly scan as proto-events

Most of the work that is done for fly scanning is done with Ophyd. Bluesky’s way of fly scanning requires the Ophyd
flyer device to have the kickoff(), complete(), collect(), and collect_describe() methods. Any calculation
or configuration for fly scanning is done inside the Ophyd device.

2.7. Fly Scanning 35



haven, Release 0.1.0

2.7.1 Plans for Fly-Scanning

Haven provides several fly-scanning plans. Each one assumes that flyers implement Ophyd’s FlyerInterface. Flyer’s
must also have component signals for defining the parameters of the fly scan. These signals do not need to have EPICS
PVs; they can just be regular Signal components:

• start_position: center of the first bin to be measured, in motor engineering units

• end_position: center of the last bin to be measured, in motor engineering units

• step_size: width of each bin, in engineering units

fly_scan()

Haven’s fly_scan() mimics the Bluesky scan() plan, except that it only accepts one motor and accompanying
arguments. Both detectors and motor must implement Ophyd’s FlyerInterface. Notice that dwell_time is set
separately.

import bluesky.plan_stubs as bps
import haven
haven.load_instrument()
RE = haven.run_engine()
# Prepare devices
aerotech = haven.registry.find("aerotech")
ion_chambers = haven.registry.findall("ion_chambers")
RE(bps.mv(aerotech.horiz.dwell_time, 0.2))
# Execute the fly scan
plan = haven.fly_scan(ion_chambers, aerotech.horiz, -1000, 1000, num=101)
RE(plan, sample_name="...", purpose="...")

This plan only works for one flyer motor since flying two motors from Bluesky does not ensure consistent timing
between the flyers. If multiple motors should be flown following the inner_product pattern, they should be wrapped in
a new Flyer object that can coordinate both motor trajectories.

grid_fly_scan()

Haven’s grid_fly_scan() provides an N-dimension scan over all combinations of multiple axes, mimicing Bluesky’s
grid_scan() plan. The first motor listed will be the slow scanning axis, and the last motor listed will be the flyer.
Each motor must have an accompanying start, stop, and num arguments:

from bluesky import plans as bp, plan_stubs as bps
import haven

# (start, stop, num)
fly_params = (-100, 100, 21)
step_params = (-100, 100, 5)
dwell_time = 0.1

haven.load_instrument()

# Find the devices
ion_chambers = list(haven.registry.findall("ion_chambers"))
aerotech = haven.registry.find("aerotech")
# Create the run engine

(continues on next page)
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(continued from previous page)

RE = haven.run_engine()
# Set the dwell time per pixel separately
RE(bps.mv(aerotech.horiz.dwell_time, dwell_time))
# Set up the plan
plan = haven.grid_fly_scan(ion_chambers,

aerotech.vert, *step_params,
aerotech.horiz, *fly_params,
snake_axes=True)

# Run the plan
RE(plan, purpose="testing fly scanning", sample="None")

Note: The flyer’s dwell_time component is set outside of grid_fly_scan(). This is in keeping with Bluesky’s
approach on setting acquisition times, where each device has its own concept of acquisition time and so these need to
be explicitly set as determined by the hardware.

2.7.2 Aerotech-Stage

The Aerotech stage has a number of axes, for example, .horiz and .vert. Each is a sub-class of EpicsMotor, adding
the FlyerInterface. Each of these axes can be used as a flyer in the plans for fly-scanning.

Position-Synchronized Output (PSO)

The Ensemble controller can be configured to emit voltage pulses at fixed distance intervals. These position-
synchronized output (PSO) pulses are used to trigger hardware to begin a new bin of measurements. The Ophyd
flyer device sends comands to the ensemble controller to configure its settings. PSO pulses are sent in the form of a
10us on pulse. These pulses are then set to only happen every multiple integer of encoder step counts, corresponding
to the Flyer device’s step_size signal. When possible, the pulses are set to only ocur within the range of scanning.

Fig. 1: Diagram of PSO pulse timing. Encoder counts are an integer number of the smallest unit the controller can
measure (e.g. nanometers). The distance from one pulse to the next equates to new bin on the scaler. Encoder window
gives a range outside of which PSO pulses will be suppressed. Bottom line shows relative positions of key calculated
and supplied parameters.

While the scaler can use these raw pules to create a bin, other detectors have other requirements. A DG645 delay
generator is used to transform the pulses to match the various detectors. The trigger signal going to the scaler also goes
through the delay generator, but the length of the delay matches the duration of the PSO pulse, so effectively output AB
from the delay generator repeats the PSO pulses.

Fig. 2: Control flow diagram of how hardware is connected for fly scanning. The trigger output mimics the trigger
input on the DG645 delay generator, while the length of the delay for the falling edge of the gate signal is based on the
dwell time of the scan.
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Calculated Components Before Scan

The aerotech flyer calculates the following components: slew speed, a taxi start and end position, a PSO start and end
position, the window start and end in encoder counts, and the step size in encoder count.

Because step size and dwell time are input parameters, that means points must be captured while the stage moves at a
constant velocity otherwise the measurments will have distorted lengths.

The Taxi start and end are the physical start and end positons of the sample stage. This is to allow the stage to accelerate
to target velocity needed during scan.

The encoder window start/end is set to create a range for pulses during the scan. As well as the encoder step size which
tells the PSO when to send pulses.

The PSO start/end determines the start of the first measument and the end of the last.

An array of PSO positions is also created to provide the location of each measured point.

Physical Fly scan process

1. Moves to PSO start

2. Arms PSO and starts encoder count

3. Moves to taxi start

4. Begins accelerating until reaching speed at PSO start and starts flying

5. PSO triggers detectors to take measurments until reaching a step

6. Continues flight taking measurments until reaching the end of the last measument at PSO end

7. Finally comes to a stop at taxi end after deccelerating

2.7.3 Notes

If a scan crashes the velocity will need to be changed back to its previous value in the setup caQtDM, otherwise the
velocity will likely be very slow.

2.8 Hardware Triggering

For simple devices, it is enough to let bluesky and ophyd handle triggering the detector. In our case, though, many
detectors are to be triggered simultaneously using one piece of hardware.

An example is using the scaler to trigger multiple pieces of hardware. The SIS3820 multi-channel scaler can
measure multiple channels of input with one trigger. If each detector is an ophyd Device object, then running a
bluesky plan with multiple of these devices on the same scaler will result in the scaler being triggered multiple times
(once for each device in the plan).

Additionally, the scaler presents the counting gate on one of its control output lines. This can be fed into the Xspress3
electronics that power many of our Vortex detectors. Bluesky by default will try to trigger the Xspress3 directly. The
Device definition for the Vortex detector could trigger the scaler itself, but this creates yet another trigger signal to the
scaler, as described above.

The solution is to use the ScalerTriggeredmixin class. This adds a scaler_prefix argument to __init__ that expects
a channel access PV path and points to the scaler that should be used to trigger this device. If multiple instances of
ScalerTriggered with the same scaler_prefix are present in a bluesky plan, then the scaler is only triggered once for
all the devices.
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scaler_prefix can be omitted, in which case the prefix argument will be used for the scaler prefix.

from haven.instrument.scaler_triggered import ScalerTriggered
from ophyd import Device

class VortexDetector(ScalerTriggered, Device):
...

vortex = VortexDetector(prefix="vortex1ioc:vortex", scaler_prefix="25idcVME:scaler1")

2.9 Instrument Registry for Looking Up Components

The instrument registry in Haven provides a way to keep track of the devices (including components, motors, signals,
etc.) that have been defined across the package. In order for the registry to know of a device, that device must first be
registered. Unless you are defining your own devices or components, this will have already been done.

It is a goal of this project that executing simple scans will not require you to know about or interact directly with
the registry. However, more advanced scans, like using area detectors from the command line, may require you to
look up devices in the registry prior to building the scan.

This documentation is provided primarily for developers who are planning to register their own devices and components.

2.9.1 Looking Up Registered Devices/Components

In many cases, Haven will look up devices behind the scenes when executing a plan. However, it is possible to look up
devices directly using the registry.

The registry uses the built-in concept of device labels in Ophyd. The registry’s find() and findall() methods
allows devices to be looked up by label or device name. For example, assuming four devices exist with the label
“ion_chamber”, then these devices can be retrieved using the registry:

from haven import registry

ion_chambers = registry.find(label="ion_chambers")
assert len(ion_chambers) == 4

Many plans in Haven accept lists of detectors and positioners. In some cases, it is possible to pass a string as these
parameters as well, in which case the plan will assume that the string is a device name or label and find all registered
devices that match. The following will execute the energy_scan() plan using any device initialized with labels={
"ion_chambers"} and known to the registry.

from haven import energy_scan

RE(energy_scan(..., detectors="ion_chambers"))
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2.9.2 Looking Up Sub-Components by Dot-Notation

For simple devices, the full name of the sub-component should be enough to retrieve the device. For example, to find
the signal preset_time on the device named “vortex_me4”, the following may work fine:

preset_time = haven.registry.find("vortex_me4_preset_time")

However, if the component is lazy and has not been accessed prior to being registered, then it will not be available
in the registry. Sub-components can instead be accessed by dot notation. Unlike the full device name, dot-notation
names only resolve when the component is requested from the registry, at which point the lazy components can be
accessed.

For example, area detectors use many lazy components. If sim_det is an area detector with a camera component
sim_det.cam, then the name of the gain channel is “sim_det_cam_gain”, however this is a lazy component so is
not available. Instead, retrieving the device by haven.registry.find("sim_det.cam.gain") will first find the
area detector (“sim_det”), then access the cam attribute, and then cam’s gain attribute. This has the side-effect of
instantiating the lazy components.

2.9.3 Registering Individual Devices

Before looking up a device in the registry, it is necessary to inform the registry about the device. The simplest way to
do this is using the register() method on the registry.

from ophyd import Device
from haven import registry

# Create the device instance
I0 = Device("PV_PREFIX", name="I0", labels={"ion_chamber"})
# Register the device with the registry
registry.register(I0)

# Or more concisely in 1 line
It = registry.register(Device("PV_PREFIX", name="It", labels={"ion_chamber"}))

2.9.4 Registering Device Classes

If you are creating many instances of a custom Device subclass, registering each instance individually can be repetitive.
Haven allows you to modify the class itself so that each instance is automatically registered. This is accomplished using
the register() method as a decorator on the class:

from ophyd import Device
from haven import registry

@registry.register
class IonChamber(Device):

...

I0 = IonChamber(..., labels={"ion_chamber"})

This is equivalent to the examples for registering individual devices above.
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2.9.5 Creating Your Own Registry

There is nothing special about haven.instrument.instrument_registry.registry; it is simply an instance of
haven.instrument.instrument_registry.InstrumentRegistry created during module import as a default.
Most of the devices and components defined in Haven register themselves with this default registry. However, there’s
nothing to prevent you from creating your own registry:

from haven import InstrumentRegistry
from ophyd import Device

# Create an empty registry
my_registry = InstrumentRegistry()

# Create a new registered device object
my_device = my_registry.register(Device("PV_PREFIX", name="My Device", labels={"custom"}
→˓))

# Now look for this device in the registry
my_devices = my_registry.find(label="custom")

2.9.6 Design Defense

This pattern touches on behavior already present in bluesky and apstools. However, there are some quirks that make
these implementations unsuitable for use in Haven.

Bluesky provides the %wa IPython magic to list devices (apstools has a similar listobjects() function). While
conventient when working in an IPython environment, this comes with a number of drawbacks for Haven. First, %wa
only knows about devices listed in the local context of the IPython interpreter. If a device is defined in the file devices.py,
the method of importing will determine whether the device is visible or not:

Listing 3: devices.py

from ophyd import Device

I0 = Device("PV_PREFIX", name="I0", labels={"ion_chamber"})

Listing 4: IPython shell

>>> import devices
>>> print(devices.I0)
>>> %wa # This will not include I0
>>> from devices import I0
>>> print(I0)
>>> %wa # Now I0 is included

This detail makes it impossible to run plans without knowing about all the devices and importing them individually, or
else using star imports (e.g. from devices import *) which make tracing imports difficult and leads to cluttered
namespaces.

Furthermore, this approach is tightly coupled to IPython, since it relies on the IPython shell’s namespace to find devices.
The above approach is not possible with vanilla CPython.

It may be possible to use locals() instead of the IPython shell namespace, solving the reliance on IPython. This still
leaves the issue of only having access to devices imported directly into the shell’s namespace, however. This could
be solved by recursively descending into imported modules looking for devices. Here, PEP 20 steers us towards the
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registry-based solution, where we must explicitely define a device as being included in the registry (“explicit is better
than implicit”).

2.10 Motor Positions

Haven is able to save the positions of one of more motors in a database; the saved positions can then be recalled later.
The following functions are related to motor positions:

• save_motor_position()

• list_motor_positions()

• recall_motor_position()

Contents

• Motor Positions

– Saving a Motor Position

∗ Saving All Motor Positions

– Viewing Saved Motor Positions

– Recalling a Saved Motor Position

– The MotorPosition Data Model

2.10.1 Saving a Motor Position

To save the position of one or more motors, call save_motor_position() with the motors to be saved as arguments.
These arguments can either be the name of a previously instantiated ophyd.Device object, or the Device itself. A
keyword-only name argument is also necessary, which should be a short, human-readable description of the motor
position.

import haven
# An example of using the motor names to save the position
uid = haven.save_motor_position("Aerotech_vert", "Aerotech_horiz", name="CuO A")

import ophyd
import haven
# An example of using the ophyd Devices to save the position
aerotech_vert = ophyd.EpicsMotor("25idd:m1")
aerotech_horiz = ophyd.EpicsMotor("25idd:m2")
uid = haven.save_motor_position(aerotech_vert, aerotech_horiz, name="CuO A")

save_motor_position() returns the database ID of the document that was created. This ID is the best way to
retrieve a motor position from the database later, though it can be also be retrieved using the name argument provided
it is unique.
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Saving All Motor Positions

It may be convenient to save all motor positions to the database as a sort of checkpoint before performing some non-
routine operation. This can be done with the following line. Future work will provide a shorted version. Remember
to call load_instrument() first.

haven.save_motor_position(*haven.registry.findall(label="motors"), name="checkpoint␣
→˓before replacing monochromator")

2.10.2 Viewing Saved Motor Positions

The function list_motor_positions() will print out a list of all the saved motor positions. This list also contains
the database ID for each position, in case that information was not retained when saving the motor position originally.

2.10.3 Recalling a Saved Motor Position

The beamline can be set back a previously saved motor position using the haven.motor_position.
recall_motor_position() function. This function is a bluesky-style plan, and so the plan must be passed to
a RunEngine to be effective.

The saved motor position can be retrieved using either the ID generated when the position was saved (the uid argument),
or by the name argument that was chosen when the position was saved. If the *name* is not unique, no guarantee is
made regarding which motor position is restored.

import haven
RE = haven.RunEngine()

# Save the motor position
uid = haven.save_motor_position("Aerotech_vert", name="start position")

# Restore the motor position
plan = haven.recall_motor_position(uid=uid)
RE(plan)

2.10.4 The MotorPosition Data Model

haven.motor_position.MotorPosition is a pydantic model that represents a set of motor positions in the database.
Any attribute that has a type definition (e.g. offset: float = None) is a data attribute and can be saved to the
database.

To add a new database value, add the appropriate attribute to the pydantic model, and modify the save() and load()
methods to accomodate the new database value.
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2.11 Saving Data to XDI Files

Note: This page is intended for beamline staff. If you are a user at a beamline using Haven, this is most likely already
set up for you.

XAFS Data Interchange (XDI) is a standard file format for storing data from individual XAFS scans in a plain-text
file. Currently, Haven supports automatic saving of energy scans using either the energy_scan() or xafs_scan()
functions. The filename used for saving will be generated from metadata. For more refined control, see below for how
to create XDIWriter objects, or even creating a customized subclass of XDIWriter.

The XDI file is opened at the start of the scan, and data are written in real time during data acquisition, so aborted
plans will still have data saved. Halted plans will still have data saved, but the file may remain open with write intent
until the python interpreter running Haven is closed. This was a deliberate design choice to ensure the XDI writer keeps
an exclusive lock on the file during execution of the plan.

2.11.1 Using the XDIWriter

If you want to save the XDI file to specific place or pass in other arguments, you can create your own instance of the
XDIWriter class. The first argument to XDIWriter() should be either a file name, a pathlib.Path object, or an
open file like those return by python’s built-in open(). The following 3 invocations are all valid:

from haven import XDIWriter
from pathlib import Path

# Provide a regular string...
writer = XDIWriter("/path/to/my/xafs_data.xdi")

# ...or provide a Path object...
root = Path("/path/to/my/")
writer = XDIWriter(root / "xafs_data.xdi")

The filename can contain placeholders that will be filled in once the plan starts. This works similarly to python’s format
string syntax. For example:

from haven import XDIWriter

plan = energy_scan(..., E0="Ni_K", md=dict(sample_name="nickel oxide"))
writer_callback = XDIWriter(fd="./{year}{month}{day}_{sample_name}_{edge}.xdi")
RE(plan, writer)

Assuming the date is 2022-08-19, then the filename will become “20220819_nickel-oxide_Ni_K.xdi”.
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